
Building Casual Games and APIs for
Teaching Introductory Programming Concepts

Brian Chau
Comp. & Software Sys.
U of Washington Bothell
chautime@msn.com

Rob Nash
Comp. & Software Sys.
U of Washington Bothell

rynn@uw.edu

Kelvin Sung
Comp. & Software Sys.
U of Washington Bothell

ksung@uw.edu

Jason Pace
Digital Future Lab

U of Washington Bothell
jasonpa@uw.edu

ABSTRACT
We are building a series of custom casual games to support teaching
and learning of introductory programming (CS1/2) concepts with a
focus on ease of adoption. Our games are innovative twists on
popular casual genres, and each game is designed explicitly for
teaching specific programming concepts (e.g., conditionals, arrays).
Based on these games, faculty can explain and students can explore
CS1/2 concepts through engaging gameplay mechanics by working
with a simple Application Programming Interface (API) defined for
each game. Faculty can construct small and fun games to
demonstrate concepts while students can exercise their own
understanding and creativity by customizing the game and making
it their own. To verify the effectiveness and to ensure educational
objectives can be accomplished, sample teaching materials have
been developed using these APIs. To support selective adoption of
the materials by faculty, the games are well-encapsulated and
completely independent from one another. To ensure fun and
engaging experiences for students, each game is designed, built, and
play tested almost entirely by undergraduate students. Based on two
completed games and the associated teaching materials, feedback
from novice student programmers indicates that the games are
engaging and the associated APIs are straightforward to use. This
paper presents our motivation and process for building casual
games, and discusses the API development and results.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education – computer science education.

General Terms
Design, Experimentation

Keywords
Computer Science Education, API, API Design, Casual Games,
CS1/2, Programming

1. INTRODUCTION
When properly integrated into coursework, using videogames to
teach computer science (CS) accomplishes desired student learning
outcomes, builds excitement and enthusiasm for the discipline, and
attracts a bright new generation of students early in their academic
careers [1], [2]. As a relatively new approach, interested faculty
require assistance in the form of elementary sample materials and
tutorials to support their exploration and experimentation [3].

The Game-Themed Computer Science (GTCS) project and the
associated library [3] are designed specifically for this purpose with
elaborate sets of sample teaching materials that hide the graphics
and gaming details [4]. The self-contained nature of the materials
allow faculty to adopt and use each without significant modification
to their existing classes. Results from adopting GTCS materials
have demonstrated effectiveness in engaging students and
achieving the desired learning outcomes [5]–[7]. In addition, results
from the many workshops (e.g., [8], [9]) showed that although
interested faculty members with no background in graphics or
gaming found the GTCS materials to be nontrivial, they were able
to comprehend and begin developing game applications based on
the GTCS library within a matter of hours [3].

Student feedback on GTCS materials indicated that though
they find the materials motivating, they were also frustrated by the
simplicity, e.g., the absence of fundamental gaming features like
power-ups or win conditions. On the other hand, faculty workshop
participants pointed out that the most demanding efforts in building
game-specific teaching materials are often unrelated to the
educational goals which include the time-intensive processes of
locating or generating art and audio assets, or implementing the
annoying details of various object interaction rules.

To address this seemingly contradictory feedback while
preserving the important characteristics of simplicity and usability
for a targeted curriculum, the GTCS project group is building a
series of causal games and corresponding APIs. These standalone
games each showcase one or two programming concepts, allowing
faculty to pick and choose for selective adoption. The games have
gone through elaborate playtesting to ensure an engaging and
complete gameplay experience. Each API is methodically extracted
from the finished game and refined based on usability and support
for the presentation of targeted programming concepts so that
faculty can build their own aesthetically engaging materials while
focusing on the pedagogy rather than irrelevant details such as asset
management.
 Currently, there are five games under development in various
stages of completion. Two of the games in particular—Space
Smasher and Corrupted—include finalized APIs, and the sample
teaching materials for Space Smasher are currently being field
tested in CS1/2 classrooms. This paper uses these two games and
their respective APIs as examples to discuss our game development
and API refinement processes and results.

In the rest of this paper, section 2 briefly surveys previous
work; section 3 reviews existing API studies and articulates a design
guideline for our game APIs; section 4 discusses our game and API
development processes; section 5 presents our APIs from Space
Smasher and Corrupted; and section 6 concludes the paper.

2. GAMES AND CS1/2 CLASSES
Existing work on presenting CS1/2 concepts in the context of
computer games can be broadly categorized into three
approaches [4]: little or no game programming (e.g., [10]) where
students learn by playing custom games; per-assignment game

 Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page.
Proceedings of the 10th International Conference on the Foundations of
Digital Games (FDG 2015), June 22-25, 2015, Pacific Grove, CA, USA.
ISBN 978-0-9913982-4-9. Copyright held by author(s).

development (e.g., [11]) where individual assignments are games
designed around technical topics being studied, and extensive game
development where faculty and students work with custom game
engines (e.g., [12]) or specialized environments (e.g., [13]).

As pointed out by Levy and Ben-Ari [14] and Ni [15], issues
that faculty consider when examining new and innovative teaching
materials for adoption include (amongst others): preparation time,
material contents, and topic coverage. Yet, most of the existing
results from integrating games in CS1/2 classes are typically from
faculty members with expertise in graphics or games and are
“student-centric,” where the main goals are student engagement and
various learning outcomes—preparation time for adoption and
flexibility of the materials for topic coverage are usually not
primary concerns. Indeed, it can be challenging to take advantage
of these results for the general faculty teaching CS1/2, since many
have little to no background in computer graphics or games.

As discussed in the previous section, while effective in
addressing the issues of faculty background and curricula
modularity, the feedback from previous GTCS materials identified
the seemingly contradictory student desire for complexity and
faculty need for simplicity [3]. This paper presents the recent GTCS
project group efforts in addressing this interesting dichotomy—
building complete casual games that offer meaningful gameplay
experiences for the students while designing APIs that ensure
simple and straightforward curriculum development for the faculty.

3. API DESIGN GUIDELINES
An API can be described as a well-defined interface that exposes
the external services of a singular component to clients who will
consume these services as elemental software building blocks [16].
In our case of designing an interface for developing casual games,
our APIs are a collection of functions intended to be reused by other
programmers to perform common tasks that may be difficult,
cumbersome, or tedious [17].

Well-defined APIs foster productivity, code reuse,
encapsulation of complex systems, and consistent behaviors for
their users [18]. A sound API should be easy to use and hard to
misuse [19]. In the design of our API, some of the fundamental
goals overlap (e.g. productivity and code reuse) while others oppose
one another, offering interesting challenges. For example, while
achieving tight encapsulation is desirable, our APIs must
purposefully expose details relating to the concepts that they are
designed to teach, e.g., exposing the details of underlying 2D arrays
that represent the grid system of Corrupted for student
manipulation. To add to this, our end users are on the two ends of
the spectrum of programming expertise—faculty and students of
CS1/2 classes.

To address our requirements, the following considerations are
articulated to guide the design of our APIs.
 Usability & Structured Simplicity: usability and simplicity

facilitate the creation of effective CS1/2 materials accessible to
students and faculty with no background in graphics or gaming.

 Discoverability & Learnability: our end users must be able to
build simple applications quickly with minimum familiarity of
the APIs but also have the opportunity to gradually explore
advanced functionality at their own pace.

 Expressiveness & Productivity: While the final products built
by the students may resemble casual games, the APIs primarily
support the building of effective teaching materials as vehicles
for educational content delivery.

 Encapsulation & Modularity: as previously discussed, the
goals are to tightly encapsulate the complex graphics and gaming

1 http://www.bothell.washington.edu/digitalfuture

functionality while strategically exposing selected concepts for
teaching purposes.

Though important, performance is only a referencing factor in our
API design—as long as an acceptable frame rate and memory
footprint are maintained.

4. THE DEVELOPMENT PROCESSES
The ideal game design and implementation for our purposes must
be simple enough so that neither students nor faculty become mired
in graphics or game complexity, and yet the gameplay must be
genuinely fun so that students can connect their work to a final
experience that stands on its own merits. Fortunately, simple and
fun are not mutually exclusive when it comes to game design.

4.1 The Two Games
Space Smasher is a variant of Super Breakout-style games, where
players remove blocks on the screen by bouncing a ball with a
moveable paddle. The popularity of this type of game spans
generations, and the numerous variants tend to be largely identical
and feature basic color block graphics. Space Smasher introduces
more interesting gameplay by adding customizable blocks that are
capable of triggering events such as swapping blocks, or
enabling/disabling unbreakable blocks. Also included are more
premium sets of graphics tiles and sounds than are typically found
in this genre. The ball-block-paddle collision tests, the special event
logic, and the iteration through all blocks present an excellent
structured sandbox for teaching and playing with conditionals and
loops conceptually.

Corrupted is a variation on the Bubble Shooter genre, where
players launch a colored tile into a larger group of tiles and attempt
to make matches of three until all tiles are removed or until the tiles
advance to meet the player at the opposite end of the screen [20].
Bubble shooters also tend to be simple match-and-remove games
with minimalist graphics. Corrupted recasts the game with an active
automated opponent employing a variety of tricks to increase the
challenge and intrigue, and the game itself has been given a distinct
artistic style. The visual, spatial, and multi-dimensional aspects of
the color tiles present a rich domain of concepts for use in teaching
1D and 2D arrays.

Note that it is relatively straightforward to design custom
levels and additional gameplay elements to both Space Smasher and
Corrupted. The game mechanics for either do not require extensive
balancing or tuning to make levels enjoyable. Even novice
designers can quickly create fun and challenging custom levels. In
this way, after a basic process of discovery and familiarization with
the concepts and APIs, students can implement their own unique
levels as practice exercises.

4.2 The Teams
We knew from the outset that creating casual games designed both
to teach fundamental programming concepts and to engage players
would require teams with varying expertise: making fun games is
an interdisciplinary undertaking and requires a wide variety of
skills. Thus, we established a partnership that includes frontline
CS1/2 faculty members and the Digital Future Lab (DFL)1 of the
University of Washington Bothell (UWB) campus—an interactive
media R&D studio developing original interactive works
supporting education, entertainment, and social justice.
 The DFL emphasizes students’ dual role as creators and
learners, while working with students across disciplines and
backgrounds to ensure each core component of the game is well
designed. The games are developed almost entirely by
undergraduate students, including CS and non-CS majors. Roles

include level design, visual and user-interface design, sound and
music composition, game development, testing, and project
management.

4.3 Game Development Process
Our design approach begins with a unique brainstorming process
where game designers generate ideas using familiar game
mechanics to facilitate learning while practicing a specific
programming concept, and also to gauge the fun factor of the
prescribed activities. Faculty contributors help guide the design
towards modular and feasible outcomes by providing simple and
clearly defined coding requirements.
 The photo in Figure 1 exemplifies our unique approach with
the initial whiteboard sketches for the Space Smasher game. Notice
that the left side of the board charts the "if" control structure that the
game is being designed to teach, the center shows a gameplay
screen mockup, and basic game rules are listed on the right. The
conditional programming construct (on the left) provides the
underlying impulse guiding the design process from its initial
stages.

As an initial idea gains momentum, the DFL designers
examine and refine fundamental gaming mechanics to maximize
overall entertainment value, while CS1/2 faculty evaluate
implementation simplicity and the level of exposure to the intended
programming concept. Simultaneously, student developers create
simple digital prototypes so designers can experiment interactively
with their ideas and make improvements to the core gaming
experience. Playable versions of the game then undergo rigorous
hands-on testing to refine each design choice or mechanic.

4.4 API Definition and Refinement Process
The final game and corresponding API development overlap
significantly through a three-step process: (1) finalize the game
prototype, (2) define and refine the API while completing the game
implementation, and (3) build tutorials and teaching materials based
on the API. In our process, the API refinement spans from the
stabilization of the prototype game until the team finishes tutorials
and teaching materials. This allows for verification of initial
usability of the APIs [21].

Once these pieces are in place, the team fine-tunes gameplay
while integrating production-quality graphic and audio assets. The
result is a game that has the look-and-feel of a studio-quality
production, while containing library and game features that will
challenge new CS students to program individual game variations
as part of a larger learning process.

5. RESULTS
The APIs are defined based on our previous experience from the
GTCS foundations game engine [6] where the user code subclasses
from an API-defined superclass and overrides two protected
methods: initialize() and update(). The API calls the initialize()
method exactly once before the game begins and the update()
method continuously at a real-time rate until the game ends.

The underlying philosophy of the API is to provide all the
functionality such that user code can focus on implementing just the

game logic that targets the selected CS1/2 concepts. This adds
responsibilities to the API as it must anticipate and provide a slew
of resources to accomplish such as exercises, including pre-defined
win & lose menu screens, access to all art and audio assets (user
code can override these if desired), and anything related to the
gameplay environment (e.g., window size, UI layout, etc.). In
addition, the APIs provide access to each in-game object (e.g., balls,
paddles, or tiles) and their behaviors (e.g., move, speed, remove)
plus all potential object-to-object interactions (e.g., ball-and-block
collisions, reflections). All created objects are drawn automatically
unless explicitly removed or set to invisible. To ensure user
testability, mouse and keyboard input are both supported and
special debugging modes are built into each API (e.g., stopping and
allowing the player to control the ball movement in Space Smasher,
or key binding to create specific colored tiles in Corrupted).

In the following we present actual sample teaching materials
for Space Smasher and Corrupted to further illustrate each API.

5.1 The Space Smasher API
The screen shots (left: full game, right: teaching example) and code
listing in Figure 2 show an example for teaching conditionals and
loops. Note that the MySpaceSmasherGame class is a subclass of
the API defined SpaceSmasher superclass. The entire game is then
defined by the two protected overridden methods: inintialize() and
update(). Note that game object sets (e.g., lifeSet, paddleSet) are
pre-defined with intuitive and convenient behaviors (e.g., add, get,
moveLeft, moveRight, etc.).

In this example, the initialize() method creates five lives, a
paddle, and uses a “for” loop to generate the two rows of various
blocks. The update() method showcases the simple and chained
conditional statements to parse user input and the corresponding

public class MySpaceSmasherGame extends SpaceSmasher {

 // init the game, called once by the API
 protected void initialize() {
 lifeSet.add(5); //create 5 lives: show in top‐left
 paddleSet.add(1); //create 1 paddle
 blockSet.setBlocksPerRow(6); //num of blocks per row

for (int i = 0; i < 2; i++) { //create two rows of blocks
 blockSet.addNormalBlock(1); //normal block (light gray)

 blockSet.addFireBlock(1); //fire block (red)
 blockSet.addNormalBlock(1); //normal block (light gray)

 blockSet.addFireBlock(1); //fire block (red)
 blockSet.addFreezingBlock(1); //ice block (blue)
 blockSet.addFreezingBlock(1); //ice block (blue)
 }
 }

 //update is called continuously >40 times per second
 protected void update() {
 //control the paddle left/right movement
 Paddle paddle = paddleSet.get(0); //get the paddle
 if (keyboard.isButtonDown(KeyEvent.VK_LEFT))
 paddle.moveLeft(); //move paddle left
 if (keyboard.isButtonDown(KeyEvent.VK_RIGHT))
 paddle.moveRight(); //move paddle right

 //conditionally spawning balls with loops
 if (keyboard.isButtonDown(KeyEvent.VK_1)) {
 Ball foo = new Ball(); //make a new ball
 ballSet.add(foo); //add to set of balls
 foo.spawn(paddle); //put it on screen above the paddle
 } else if (keyboard.isButtonDown(KeyEvent.VK_2)) {
 for (int i=0; i<2; i++) { //do the logic in loop twice
 Ball foo = new Ball(); //make a new ball
 ballSet.add(foo); //add to set of balls
 foo.spawn(paddle); //put it on screen above the paddle
 }
 } else if (keyboard.isButtonDown(KeyEvent.VK_3)) {
 for (int i=0; i<3; i++) { //do the logic in loop thrice
 Ball foo = new Ball(); //make a new ball
 ballSet.add(foo); //add to set of balls
 foo.spawn(paddle); //put it on screen above the paddle
 }
 }
 }
}

Figure 2: Space Smasher and Conditional/Loop Example

Figure 1: Initial whiteboard sketches for Space Smasher.

responses with the simple “for” loops. The right screen shot at the
top of Figure 2 captures the program after the player types in a series
of 1, 2, and 3’s.
 In this case, since the student’s code did not define the gaming
logic necessary to support multiple balls with collision detection, all
the spawned balls will travel through the blocks and window bounds
and disappear. After leading students through initial interaction
with this example, it is an excellent opportunity to introduce the ball
collide() and reflect() methods and engage students in articulating
solutions to keep the balls within the game window bounds and
clearing all the blocks.

5.2 The Corrupted API
The screen shots (left: full game, right: teaching example) and code
listing in Figure 3 show games developed based on the Corrupted
API for teaching 2D arrays. In the ColorLineBlaster code, notice
the similarity in structure to the Space Smasher example in Figure
2, where the subclass from the API-defined Corrupted class
overrides the initialize() and update() methods. Once again, we
require from the API intuitive and convenient pre-defined behaviors
(e.g., player movements, tile color access).

In this example, the initialize() method populates a 2D grid
array with random color tiles. The update() method polls for
keyboard input and triggers game behavior correspondingly. The up
and down keys move the player’s cannon and the right key clears
all tiles in a given row that match the color of the player’s cannon.
This example highlights linear searching by traversing an array and

2 The games, source code, and all art and audio assets are freely available at

https://depts.washington.edu/cmmr/GTCS/.

checking for matching colors as novel animations illustrate the
results of their code graphically onscreen.

5.3 Discussions
As exemplified in the case studies of Space Smasher and Corrupted,
our casual games are rich yet simple platforms for prominently
showcasing CS1/2 programming constructs with support to build
engaging user interaction. The APIs are bridges between classic
textbook teaching examples and game-themed teaching materials.
This unity is achieved by exposing only the familiar programming
constructs used in a typical CS 1/2 course while hiding the details
that govern image rendering, sound and animation, which may be
foreign to students and faculty.

When evaluated against our own design guidelines, the
structure of both APIs is based on simple subclass extensions and
requires only two functions to implement. With the provided sample
teaching materials, a faculty member can begin experimentation
without referencing the API documentation. Each casual game and
corresponding game objects (e.g., balls, paddles, or grid cells)
provide an excellent digital playground for discoveries—users can
experience functionality by interacting with the provided games and
explore the defined objects to learn more about the API. With the
game design being driven by programming concepts, as illustrated
in the listings of Figures 2 and 3 it is straightforward to build
examples showcasing desired educational concepts. Lastly, we have
hidden all art and audio assets, as well as the implementation of
game rules, allowing faculty and students to focus on the more
important programming constructs at hand.

As an educational tool, the APIs provide students with a
sandbox framework that allows them to build simple games and
applications. By providing rich visualizations and supporting
engaged interactions, students can develop creative games that
capture their interest while they learn and explore concepts. A full
set of short tutorials and sample materials similar to those of Figures
2 and 3 are freely available on our project website.2

6. CONCLUSION
While welcomed by both students and faculty, adopting examples
of game-themed materials from the earlier GTCS efforts presented
an interesting dichotomy—students requested a more complete and
sophisticated gaming experience while faculty demanded less effort
in composing art assets and handling game rules when building the
teaching materials. The GTCS project team responded to this
seemingly contradictory feedback by building causal games and
then designing practical APIs to support these games. In this way,
students can interact with the games first before delving into the
challenging concepts and faculty can construct rich and engaging
examples that showcase their selected educational concepts with
only a small amount of code and time invested.

Of the five games in development, Space Smasher and
Corrupted are the most complete and include refined APIs. The
sample teaching materials based on Space Smasher focus on
conditionals and loops, and are currently being field tested by
faculty members with no background in graphics or games with
encouraging preliminary feedback.

The appeal of video games typically arises from the interplay
between game mechanics, audiovisual aesthetics, and user
interaction metaphors (i.e. the keys, clicks, and gestures used to
interact with the game environment). Our project attempts to build
upon this appeal by providing engaging games interwoven with
structured pedagogy to produce new and meaningful learning
experiences for new programmers.

public class ColorLineBlaster extends Corrupted {

 private int width = 26; //2D array width

 private int height = 10; //2D array height

 private GridElement[][] myTileGrid; //the 2D array grid

 //init the game, called once by the API

 protected void initialize() {

 myTileGrid = new GridElement[width][height]; //array allocation

 for (int x = width/2; x < width; x++) //array iteration

 for(int y = 0; y < height; y++)

 myTileGrid[x][y] = new Tile(this); //create a random color tile

 setTileGrid(myTileGrid); //pass the array to the API

 }

 //update is called is called continuously >40 times per second

 protected void update() {

 //player (vertical) position control

 if(keyboard.isButtonTapped(KeyEvent.VK_UP))

 movePlayerUp(); //up moves the player up

 else if(keyboard.isButtonTapped(KeyEvent.VK_DOWN))

 movePlayerDown();// down moves the player down

 //right arrow destroys tiles on the player's height that matches

 // the color of the player then sets the player's color to a random color.

 else if(keyboard.isButtonTapped(KeyEvent.VK_RIGHT)){

 GridElement.ColorEnum currentColor = getPlayerColorEnum();

 int y = getPlayerHeight();

 for (int x = 0; x < getWidth(); x++){

 if (myTileGrid[x][y] != null)

 if(myTileGrid[x][y].getColorEnum().equals(currentColor)) {

 myTileGrid[x][y].markForDelete(); //delete the tile

 myTileGrid[x][y] = null;

 }

 }

 setPlayerColorEnum(tileHelper.getRandomExistingColor());

 }

 }

}
Figure 3: Corrupted and Array Example

ACKNOWLEDGMENTS
This work was supported in part by the National Science
Foundation grant DUE-1140410, Microsoft Research Connection,
and Google under the Google CS Engagement Award. All opinions,
findings, conclusions, and recommendations in this work are those
of the authors and do not necessarily reflect the views of the
sponsors.

REFERENCES
[1] U. Wolz, T. Barnes, I. Parberry, and M. Wick, “Digital gaming

as a vehicle for learning,” in SIGCSE ’06: Proceedings of the
37th SIGCSE technical symposium on Computer science
education, Houston, Texas, USA, 2006, pp. 394–395.

[2] S. Leutenegger and J. Edgington, “A games first approach to
teaching introductory programming,” in SIGCSE ’07:
Proceedings of the 38th SIGCSE technical symposium on
Computer science education, Covington, Kentucky, USA,
2007, pp. 115–118.

[3] K. Sung, M. Panitz, C. Hillyard, R. Angotti, D. Goldstein, and
J. Nordlinger, “Game-Themed Programming Assignment
Modules: A Pathway for Gradual Integration of Gaming
Context into Existing Introductory Programming Courses,”
IEEE Trans. Educ., vol. 54, no. 3, pp. 416 –427, Aug. 2011.

[4] K. Sung, M. Panitz, S. Wallace, R. Anderson, and J.
Nordlinger, “Game-themed programming assignments: the
faculty perspective,” in SIGCSE ’08: Proceedings of the 39th
SIGCSE technical symposium on Computer science education,
Portland, OR, USA, 2008, pp. 300–304.

[5] K. Sung, R. Rosenberg, M. Panitz, and R. Anderson,
“Assessing game-themed programming assignments for
CS1/2 courses,” in GDCSE ’08: Proceedings of the 3rd
international conference on Game development in computer
science education, Miami, Florida, 2008, pp. 51–55.

[6] R. Angotti, C. Hillyard, M. Panitz, K. Sung, and K. Marino,
“Game-themed instructional modules: a video case study,” in
FDG ’10: Proceedings of the Fifth International Conference
on the Foundations of Digital Games, Monterey, California,
2010, pp. 9–16.

[7] C. Hillyard, R. Angotti, M. Panitz, K. Sung, J. Nordlinger, and
D. Goldstein, “Game-themed programming assignments for
faculty: a case study,” in SIGCSE ’10: Proceedings of the 41st
ACM technical symposium on Computer science education,
Milwaukee, Wisconsin, USA, 2010, pp. 270–274.

[8] K. Sung, “XNA Game-Themed Applications for Teaching
Introductory Programming Courses,” Invit. Pre-Conf.
Workshop Fourth Int. Conf. Found. Digit. Games Orlando
Fla., Apr. 2009.

[9] K. Sung, “XNA Game-Themed Applications for Teaching
Introductory Programming Courses,” Invit. Full Day
Workshop Community Coll. Fac. Microsoft Res. Redmond
Wash., Apr. 2009.

[10] K. Bromwich, M. Masoodian, and B. Rogers, “Crossing the
Game Threshold: A System for Teaching Basic Programming
Constructs,” in Proceedings of the 13th International
Conference of the NZ Chapter of the ACM’s Special Interest
Group on Human-Computer Interaction, New York, NY,
USA, 2012, pp. 56–63.

[11] A. Luxton-Reilly and P. Denny, “A simple framework for
interactive games in CS1,” in SIGCSE ’09: Proceedings of the
40th ACM technical symposium on Computer science
education, Chattanooga, TN, USA, 2009, pp. 216–220.

[12] M. C. Lewis and B. Massingill, “Graphical game development
in CS2: a flexible infrastructure for a semester long project,”
in SIGCSE ’06: Proceedings of the 37th SIGCSE technical
symposium on Computer science education, Houston, Texas,
USA, 2006, pp. 505–509.

[13] M. Külling and P. Henriksen, “Game programming in
introductory courses with direct state manipulation,” in
ITiCSE ’05: Proceedings of the 10th annual SIGCSE
conference on Innovation and technology in computer science
education, Caparica, Portugal, 2005, pp. 59–63.

[14] R. B.-B. Levy and M. Ben-Ari, “We work so hard and they
don’t use it: acceptance of software tools by teachers,”
SIGCSE Bull, vol. 39, no. 3, pp. 246–250, 2007.

[15] L. Ni, “What makes CS teachers change?: factors influencing
CS teachers’ adoption of curriculum innovations,” in SIGCSE
’09: Proceedings of the 40th ACM technical symposium on
Computer science education, Chattanooga, TN, USA, 2009,
pp. 544–548.

[16] C. R. B. de Souza, D. Redmiles, L.-T. Cheng, D. Millen, and
J. Patterson, “Sometimes You Need to See Through Walls: A
Field Study of Application Programming Interfaces,” in
Proceedings of the 2004 ACM Conference on Computer
Supported Cooperative Work, New York, NY, USA, 2004, pp.
63–71.

[17] J. Stylos and B. Myers, “Mapping the space of API design
decisions,” in Visual Languages and Human-Centric
Computing, 2007. VL/HCC 2007. IEEE Symposium on, 2007,
pp. 50–60.

[18] J. Tuloch, Practical API Design: Confessions of a Java
Framework Architect. APress, 2008.

[19] B. Ellis, J. Stylos, and B. Myers, “The Factory Pattern in API
Design: A Usability Evaluation,” in Software Engineering,
2007. ICSE 2007. 29th International Conference on, 2007, pp.
302–312.

[20] B. Chau, A. Robinson, J. Pace, R. Nash, and K. Sung,
“Corrupted: A Game to Teach Programming Concepts,”
Computer, vol. 47, no. 12, pp. 100–103, Dec. 2014.

[21] J. Bloch, “How to Design a Good API and Why It Matters,”
in Companion to the 21st ACM SIGPLAN Symposium on
Object-oriented Programming Systems, Languages, and
Applications, New York, NY, USA, 2006, pp. 506–507.

