
Seamless Integration of Coding and Gameplay:
Writing Code Without Knowing it

Stephen R. Foster
UC San Diego

9500 Gilman Dr. # 0404
La Jolla, CA 92093-0404
srfoster@cs.ucsd.edu

Sorin Lerner
UC San Diego

9500 Gilman Dr. # 0404
La Jolla, CA 92093-0404
lerner@cs.ucsd.edu

William G. Griswold
UC San Diego

9500 Gilman Dr. # 0404
La Jolla, CA 92093-0404
wgg@cs.ucsd.edu

ABSTRACT
Numerous designers and researchers have called for seamless in-
tegration of education and play in educational games. In the do-
main of games that teach coding, seamless integration has not been
achieved. We present a system (The Orb Game) to demonstrate an
extreme level of integration: in which the coding is so seamlessly
integrated that players do not realize they are doing it.

1. INTRODUCTION
A recent trend in educational game design and research goes by
many names: seamless integration [3], immersive didactics [7],
immersive learning [1], learning-gameplay integration [6], intrin-
sic integration [4], embedded learning [2], stealth learning [8], and
avoiding “chocolate-covered broccoli" [5]. Though the words may
be different, the sentiment is the same: Educational games should
integrate learning and play, rather than artificially mashing the two
together. A cogent empirical argument for why more integration is
better is given by Habgood, who shows that tighter integration of
content and gameplay correlates with higher motivation and better
learning outcomes for players [4].

In this paper, we focus on educational games for teaching program-
ming skills. Coding games are a domain in which a lack of integra-
tion can be seen in prior work – with the state of the art falling into
two broad categories: 1) programming tools for building games
(e.g. Project Spark, Scratch, and Alice) and 2) games in which
programming is a game mechanic (e.g. Lightbot and CodeSpells).
While these systems are engaging and educational in many ways,
they do not qualify as (nor do they attempt to be) experiences that
are fully seamless. It is still the case that: Users can easily distin-
guish the coding portion of the experience from the rest.

The main contribution of this paper is a game design that seam-
lessly merges coding and gaming into a single set of mechanics. To
achieve this game design, we leverage techniques from “program-
ming by demonstration" (PbD), a kind of end-user-programming
in which users demonstrate actions on concrete values in order to
construct algorithms. For our purposes, PbD enables the player

to act on objects in a gaming environment, while simultaneously
demonstrating to the system the steps that the program should take.
By mapping familiar platformer game mechanics onto various data
display and transformation operations, our system allows users to
demonstrate various transformations through familiar gameplay, with-
out having to go into a separate coding interface. This leads us to a
general technique we call Programming by Gaming (PbG) as well
as a particular instantiation of PbG in a game called The Orb Game.
At the highest level, a PbG system maps code-writing operations to
in-game actions – thus obtaining something that looks like a game
but functions like a programming language.

2. FULLY SEAMLESS DESIGN: THE ORB
GAME

To understand The Orb Game, let’s look at a usage scenario. Sup-
pose Bob is supposed to to write an algorithm that sums up a list of
numbers, the test cases might be: “[1,2,3] to 6", “[2,3] to 5”, “[3] to
3“, and “[3,4,5,6] to 18". Perhaps these are Bob’s own test-cases,
or they were provided by someone else – like a teacher. Either way,
Bob finds himself confronted with the interface shown in Figure 1.
Notice that the numbers on the right-hand panel match one of the
test cases.

Mission. The directive to “Add up the list of numbers”, though
not shown in the interface in Figure 1, is common in both games
and programming. So the mapping is quite natural. Games often
contain implicit directives – i.e. don’t die, don’t run out of time,
collect all the coins – and explicit directives – i.g. “infiltrate the
enemy based and retrieve the documents.” Explicit directives are
known as “missions” or “quests”, depending on the genre of the
game. For programmers, such directives are known as “specifica-
tions” or “requirements”.

Inventory. The inventory, the right-hand panel of the interface de-
picted in Figure 1.The inventory represents the items that the player
is carrying. This is a common mechanic found in roleplaying games,
where players routinely find, pick up, and carry in-game equipment
in their inventory. This construct can be assumed to be familiar
to players of many popular games, such as World of Warcraft and
Skyrim. Insofar as the game is also a programming language, the in-
ventory contains representations of the data on which the program
is operating. It is essentially the “heap”. In Figure 1, the inventory
contains a linked list, which in the context of our Bob example was
auto-generated based on the test case.

Avatar. The avatar is the small character standing on a green block
in the center of figure 1. Avatars are common in almost all games

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page.
Proceedings of the 10th International Conference on the Foundations of
Digital Games (FDG 2015), June 22-25, 2015, Pacific Grove, CA, USA.
ISBN 978-0-9913982-4-9. Copyright held by author(s).



and represents the player’s in-game persona. This particular avatar
inhabits a 2D world and can jump from platform to platform – a
mechanic found in classic so-called “platformer” games like Mario
and Prince of Persia. The sequence of avatar actions serve to define
the program’s control flow. As the player manipulates the avatar,
the actions are recorded and can be played back at runtime.

Activatable Entities. The avatar can interact with the colored orbs
shown in Figure 1. Many games contain things that the avatar can
interact with. Mario has special blocks with question marks on
them that produce items of interest when the avatar touches them.
Other manifestations are pressure plates, traps, buttons, switches,
treasure chests, and doors. As a programming language, these orbs
represent primitive functions that can operate on the data in the
inventory. The one with a plus sign can add two inventory items
together. The one with the scissors can cut the first item off of a
list. As a group, such operations can be thought of as an API – a
collection of related functions.

Bob is familiar with Mario-style platformers, so he takes control of
his avatar and begins to navigate The Orb Game. First, he enters the
white orb in the lower lefthand corner of the screen – the “return”
action. Insofar as the game is a programming language, this repre-
sents returning from the main function with whatever is contained
in the avatar’s inventory. Because the avatar is carrying the same
list as when the game began, Bob has written the identity function.
But because “[1,2,3] to [1,2,3]" wasn’t one of the test cases – the
game informs Bob that he has not solved the puzzle, that he should
only exit the level when he has a “6” selected. This is Bob’s first
incorrect solution.

Now Bob explores for some time and comes up with the following
(also incorrect) solution. First, Bob causes his avatar to touch the
red orb with the scissors icon. This action represents the “pop”
function. This causes the first element of the linked list [1,2,3]
to become separated from the list (a destructive action that both
returns the first element from the list and removes the first element
from the list). See Figure 2.2.

Although Bob has performed a concrete action on a concrete list,
the system interprets the action abstractly. In other words, Bob
has written the following code (though he doesn’t know it): a =
pop(input). The variable input represents the input to the sum func-
tion, which Bob is unknowingly writing.

Bob selects the popped element (the number 1) and carries it to
the yellow orb – the “add” action. Now Bob selects the list [2,3]
and touches the red orb again – the “pop” function. The element 2
becomes separated from the list. See Figure 2.3. Then, Bob selects
the 2 item and carries it to the yellow add orb, which produces the
number 3 (now that it has received both necessary inputs to perform
addition). See Figure 2.4.

Bob does one more application of pop (producing another 3). He
proceeds to add this 3 to his previously produced 3. See Figure 2.5.
The add box now produces 6. See Figure 2.5. Bob selects the 6
and exists the level again via the “return” orb. After all of these
concrete actions, we have the following abstract code:

a = pop(input)
c = pop(input)
b = add(a, c)
d = pop(input)

e = add(b,d)
return e

Figure 1: On its surface, The Orb Game is a 2D Mario-like
game. The avatar (in the lower middle) can trigger various
"orbs" throughout the environment. Doing so will transform
the data displayed in the right-hand panel in various ways. In
this game, users think they are playing a game and solving con-
crete puzzles. However, they are actually writing programs that
operate on abstract inputs.

The game produces a congratulatory message because Bob has
found a correct concrete solution for this concrete input. How-
ever, his solution is not very general – a fact that is revealed to him
when the game replays his sequence of actions before his eyes on
another one of the test cases (“[3,4,5,6] to 18”). He sees his avatar
go through the same process as before, but exiting the level with
the number 12. The game informs Bob that he needs to come up
with a single solution that works for all inputs.

Writetime vs Runtime. This brings us to one feature of program-
ming languages that is not found in most games. There are some
games that involve a kind of record/replay mechanic. For exam-
ple, the game Braid involves manipulation of time, and the players
actions can be rewound and replayed. In the game The Incredible
Machine, the player builds a virtual Rube Goldberg contraption,
then presses "Play" and watches it run. In the popular game of
Starcraft, one gives a series of orders to various troops and then
watches those troops perform those operations. All language in-
terfaces have a writetime and a runtime. The distinction between
the two blurs in so-called “reactive” interfaces like Excel – where
the modification of one cell can cause a cascade of changes across
other cells – and in programming by demonstration systems, where
concrete actions are automatically performed on concrete objects.
However, a distinct runtime is still necessary when testing the same
algorithm on a different concrete object – as is the case with Bob’s
process.

2.0.1 Conditionals and Recursion: The Big Prob-
lems

To solve this puzzle for all possible inputs, Bob needs a language
that has either loops or recursion. In either case, though, the idea
is that a sufficiently powerful language needs to be able (at run-
time) to return back to a previous line of code. At writetime, the
programmer needs to be able to specify when such returns ought to
occur. Such returns need to be conditioned upon the data (so that
loops can terminate). We chose to implement recursion because of
our background as functional programmers.



Figure 2: 1) Bob begins with the list [1,2,3]. 2) Bob triggers
the pop action, popping the first element from the list. 3) Bob
pops the second element from the list. 4) Bob triggers the add
action twice, adding 1 and 2, producing 3. Finally, 5) Bob does
another pop and another add, producing a 6.

Up to this point, Bob has performed actions that were executed im-
mediately. When he popped an element off of the list, he saw the
element become separated from the list in his inventory immedi-
ately. If he were to add two numbers together, he would see the re-
sult appear in his inventory immediately. In other words, although
he is writing code, the system is also running his code as he writes
it.

Let’s assume suppose Bob derives the following recursive solution.
Bob pops the first item off the input list [1,2,3] (as he did before).
See Figure 3.2. He selects the rest of the list [2,3] and activates the
black orb located at the bottom right of the game world. See Figure
3.3. This orb represents making a recursive call to the current func-
tion1. Ideally, the environment would now place into Bob’s inven-
tory the result of the recursive call. This is impossible (in general),
however, because the function Bob is writing is not yet complete.
But the recursive call is being performed on the list [2,3], which
happens to be another one of the test cases provided before Bob
began. So the system knows the answer even though the algorithm
is not complete. This allows the number 5 to be placed into Bob’s
inventory.

He then takes the number 5 and uses the addition orb to add the 5
to the number 1 – which he popped off earlier. This produces the
number 6. He selects the 6 and exits the level by touching the white
return orb. Here’s the code he unknowingly generated:

a = pop(input)
b = sum(input)
c = add(a, b)
return c

1We chose recursion instead of loops because of our background
as functional programmers. Some kind of looping mechanic would
also have been completely viable.

The Orb Game will then switch to runtime, replaying the avatar’s
actions on the same input. Up until the point where the avatar
touches the recursion orb, the replay will be straightforward. But
when the avatar touches the recursion orb while the list [2,3] is se-
lected, a new instance of the game will spawn (a new “stackframe”
in programming language terms) on top of the current instance.
The replay will begin anew with the list [2,3] in the inventory. The
avatar will pop off the 2, select the [3], and touch the recursion orb
– spawning yet another instance of the game (another stackframe).
One more replay, and the avatar touches the recursion orb with an
empty list. This replay will fail on the pop action, so the game
revers back to writetime, allowing the player to continue playing
from that point on – with the empty list in the inventory. The fact
that the execution failed on the empty list allows the system to con-
struct the following code:

if(input == [])
...

else
a = pop(input)
b = sum(input)
c = add(a, b)
return c

The correct thing to do in this base case is to activate the “define
constant” orb (the purple question mark orb shown in the left on
figure ??), which will prompt Bob for input. He inputs the number
0, which is immediately placed into his inventory. He then selects
the 0 and returns, completing the second branch of the conditional.

if(input == [])
a = 0
return a

else
a = pop(input)
b = sum(input)
c = add(a, b)
return c

Now the game switches back to runtime and continues by popping
off the topmost game instance (stackframe). The zero from that
instance is placed into the inventory in the instance beneath. The
replay now continues, adding the result of that recursive call to the
item popped from the list yielding a 3 (3 + 0 = 3). Still replay-
ing Bob’s actions from earlier, this new 3 is selected and the avatar
touches the return orb – popping off another game instance (stack-
frame). The returned 3 is carried into the instance beneath, where
it is added to the 2, yielding a 5 to be returned. And so on, until a 6
is returned from the bottom-most game instance. This matches the
expected return value for the test case. So the system now attempts
to try the same sequence of actions on the other test cases. See 4
for an image of the stacked game instances.

As we can see, the point of the visualized program execution is two-
fold: 1) If Bob has correctly solved the puzzle, the replay gives Bob
an explanation for why his answer is right, as well as (hopefully)
some gratification in seeing his solution correctly handle all the test
cases. 2) If Bob has not correctly solved the puzzle, the replay is
analogous to a debugger – it visualizes every step of the program
execution at a speed conducive to human comprehension, allowing
Bob to see where his solution breaks down.



Figure 3: 1) Bob begins with the list [1,2,3]. 2) Bob triggers
the pop action, popping the first element from the list. 3) Bob
triggers the recursion orb; the oracle returns 5. 4) Bob triggers
the add action twice, adding 1 and 5, producing 6, which he
returns. Finally, 5) Bob must solve the base case, which he does
by activating the define constant orb, getting a 0, and returning.

Figure 4: The runtime stack visualized as an actual stack of
games during execution. When the avatar triggers the return
orb in the lower left, the top-most level will be removed, and
the currently selected items in the inventory (the list [1]) will be
returned to the next game in the stack.

Reverse Map +5 Last
3 min, 3 tries 3 min, 4 tries 4 min, 2 tries
6 min, 3 tries 8 min, 2 tries 8 min, 3 tries
8 min, 4 try 3 min, 2 tries Fail, 2 tries
3 min, 1 try 7 min, 2 tries Fail, 3 tries
3 min, 1 try 10 min, 4 tries Fail, 2 tries
2 min, 1 try 10 min, 6 tries Fail, 2 tries
2 min, 1 try 2 min, 1 try Fail, 2 tries
2 min, 3 tries Fail, 4 tries Fail, 2 tries
5 min, 2 try Fail 6, tries Fail, 3 tries

Figure 5: Seven of the subjects completed at least 2 bench-
marks. All subjects completed at least 1 benchmark. For those
who completed the benchmarks, the average times for comple-
tion were 3.8 minutes for the first, 6.1 minutes for the second,
and 6 minutes for the third.

3. EVALUATION
Because the system is quite unconventional, our main evaluation
was a usability study – designed to probe what is usable and what
is not about the system.

We recruited 9 novices and trained them for 45 minutes by co-
solving various problems – e.g. Adding two numbers together and
return the result; popping two numbers off a list, adding them to-
gether, and returning the result; etc. We also co-solved three more
difficult problems: returning the max element in a list; returning
the sum of all the elements in a list; and returning a 1 or 0 value
depending on the parity of the number of list items.

We then tested the users on three benchmark problems: reversing
the order of the items in a list; returning a list where each number
has been increased by five; and returning the last element in a list.
We also conducted an exit interview.

The results of each subject’s performance on each benchmark are
contained in the table in Figure 5. All of the subjects solved at least
one of the three puzzles.

The most solved benchmark was the reverse benchmark – which all
subjects were able to correctly complete. The least-solved bench-
mark was the last benchmark, which was correctly completed by
two subjects. Furthermore, our exit interview revealed that sub-
jects believed themselves to be playing a video game – not pro-
gramming.

4. CONCLUSION
In education games research, seamless integration has been empir-
ically validated and called for repeatedly. We made it our goal to
integrate coding and gameplay so seamlessly that players would not
know they were writing code (a benchmark we term “fully seam-
less”). The technical challenges of the domain (i.e. mapping game-
play actions to code, representing runtime and writetime, incor-
porating recursion) can be surmounted while preserving seamless-
ness. Our usability study shows that it is possible to get non-coders
to write (correct) algorithms without knowing it.

5. REFERENCES
[1] Adamo-Villani, N., and Wright, K. Smile: An immersive learning

game for deaf and hearing children. In ACM SIGGRAPH 2007
Educators Program, SIGGRAPH ’07, ACM (New York, NY, USA,
2007).



[2] Bellotti, F., Berta, R., Gloria, A. D., and Primavera, L. Enhancing the
educational value of video games. Comput. Entertain. 7, 2 (June
2009), 23:1–23:18.

[3] Foster, S. R., Esper, S., and Griswold, W. G. From competition to
metacognition: Designing diverse, sustainable educational games. In
Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’13, ACM (New York, NY, USA, 2013),
99–108.

[4] Habgood, M. P. J., and Ainsworth, S. E. Motivating children to learn
effectively: Exploring the value of intrinsic integration in educational
games. Journal of the Learning Sciences 20, 2 (2011), 169–206.

[5] Linehan, C., Kirman, B., Lawson, S., and Chan, G. Practical,
appropriate, empirically-validated guidelines for designing
educational games. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, CHI ’11, ACM (New York,
NY, USA, 2011), 1979–1988.

[6] Maciuszek, D., and Martens, A. A reference architecture for
game-based intelligent tutoring. In Handbook of Research on
Improving Learning and Motivation through Educational Games:
Multidisciplinary Approaches, P. Felicia, Ed. IGI Global, Hershey, PA,
2011, ch. 31, 658–682.

[7] Maciuszek, D., Weicht, M., and Martens, A. Seamless integration of
game and learning using modeling and simulation. In Proceedings of
the Winter Simulation Conference, WSC ’12, Winter Simulation
Conference (2012), 143:1–143:10.

[8] Prensky, M. Digital Game-Based Learning. McGraw-Hill Pub. Co.,
2004.


	Introduction
	Fully Seamless Design: The Orb Game
	Conditionals and Recursion: The Big Problems

	Evaluation
	Conclusion
	REFERENCES 

