
“With Fate Guiding My Every Move”
The Challenge Of Spelunky

Tommy Thompson
Department of Computing & Mathematics

University of Derby
Derby, UK

tommy@t2thompson.com

ABSTRACT
This paper aims at identifying the challenge of the video
game Spelunky as a benchmark problem for Artificial In-
telligence and Computational Intelligence methods. This is
achieved by giving a thorough breakdown of the mechan-
ics and design of the game, which are indicative of features
previously established in research on complexity in 2D plat-
forming games. We provide a series of theorems to indicate
the challenge of Spelunky, noting that in the general case it
not only sits within PSPACE but is at least NP-Hard. Our
aim is to highlight this particular problem to the community
to merit further discussion.

Categories and Subject Descriptors
I.2.1 [Artificial Intelligence]: Applications and Expert
Systems—Games; D.2.8 [Software Engineering]: Met-
rics—complexity measures, performance measures

General Terms
Theory

1. INTRODUCTION
As a player begins a new run of the video game Spelunky [17],
we are greeted with an opening narration by the protagonist:
the Spelunker. This narration not only sets the mood for
the player, but adds an air of mystery to the upcoming tri-
als and tribulations that await. This opening, like the game
world itself is generated at runtime1: resulting in different
experience with each playthrough. This variation, achieved
courtesy of a Procedural Content Generation (PCG) algo-
rithm, combined with roguelike design principles are what
give Spelunky such an air of discontent; a video game that
is equally challenging as it is relentless. While on a sur-
face level it shares many similarities with classical 2D plat-
former games such as Super Mario Bros. [9] and Sonic the

1The title of this paper is one of the many opening lines that
are selected at random by the game.

Hedgehog [13] due to its reliance upon platformer mechan-
ics, these features belie a much more complex task, which
must be completed in one attempt. The mechanics, goals
and secrets of Spelunky present an incredibly rich problem
for players that not only drives newcomers to the cave en-
trance, but also helps build and maintain its dedicated fan
base.

These challenges in-turn, are what make Spelunky an inter-
esting domain to explore for Artificial Intelligence (AI) and
Computational Intelligence (CI) methods. Recent work by
the authors has focussed on the creation of a software API
that permits AI/CI applications within the Spelunky do-
main. While this work is still in its infancy, it is important
to indicate the relevance and challenge this domain presents.
This consideration must be made given that Spelunky, while
popular, is not as widely recognised as other games-based
AI benchmarks such as Super Mario Bros. [5] or Ms. Pac-
Man [8, 12]. As such, this paper is an effort to identify the
complexity of this task in contrast to other benchmarks that
would be considered similar in nature.

In this paper, we discuss the recurring features and mechan-
ics of the Spelunky video game that impact the overall com-
plexity of the task. Our contributions are providing a con-
cise discussion of the gameplay mechanics and trappings of
the Spelunky game, followed by preliminary analysis of the
games challenges, largely denoting that the game sits at least
within NP-Hard space. By considering relevant literature in
the field of computational complexity of video games, we
generate several reductions of the problems this game ex-
hibits in an effort to establish theorems of complexity. We
conclude with some discussion of how Spelunky compares to
existing competition benchmarks such as Super Mario Bros.
and Ms. Pac-Man and subsequently what potential chal-
lenges the game mechanics may bring for AI/CI methods.

We begin in section 2 by identifying related literature to
the task of establish hardness of video games with similar
mechanics, as well as the methods by which our complexity
assessment is driven. In an effort to ensure the game is fully
understood, we dedicate section 3 to a formal introduction
to the Spelunky game; identifying the gameplay mechanics,
rules and methods of progression. This will serve as means
to identify to the reader elements of play that have an im-
pact upon the complexity of the task. This knowledge is
subsequently adopted in section 4 as we identify key ele-
ments of Spelunky gameplay that help us establish theorems

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page.
Proceedings of the 10th International Conference on the Foundations of
Digital Games (FDG 2015), June 22-25, 2015, Pacific Grove, CA, USA.
ISBN 978-0-9913982-4-9. Copyright held by author(s).



for our complexity proof. We conclude with some discussion
of what challenges the mechanics discussed in section 4 may
bring for AI/CI methods in section 5.

2. RELATED WORK
The practice of establishing the computational complexity
of games - be they board games, card games or video games
- is an important one. It consolidates the challenge of a
game in such a fashion that not only provides evidence of
why humans continue to find these problems interesting, but
more critically indicates to the research community the chal-
lenge presented by these problems as an optimisation task.
This is largely encapsulated by works detailed in [3], which
gives a thorough though by no means complete survey of the
problem area.

Another excellent source is the survey conducted within [7]
that provides a lengthy discussion of complexity classifica-
tion with respect to ‘puzzles’, these are single-player games,
ranging from paper-based or toy puzzles such as n-Puzzle
and Rush Hour to video games of relatively small-scope such
as Minesweeper and KPlumber. This survey also presents a
useful introduction to the problem area for those new to
computational complexity in games.

This paper is largely influenced by more recent work in es-
tablishing the complexity of video games. There is a signif-
icant body of work focussed on the classification of ‘classic’
video games dated from the 1980’s and 1990’s. This helps to
establish that traditional ‘platformer’2 titles such as Super
Mario Bros. and Donkey Kong Country [11] are at least NP-
Complete [1, 2]. In addition, 2D platforming games typically
associated with PC can vary in their complexity, with Com-
mander Keen defined as NP-Hard while both Prince of Per-
sia and Lemmings are P-SPACE-complete [4, 16]. In addi-
tion, efforts have been made to construct an ontology from
which conclusions as to the difficulty and hardness can be
established from the mechanics of a give game [15]. We refer
to the theorems established in these papers for our analysis
of Spelunky, given that its mechanics are largely influenced
by these existing works.

3. SPELUNKY
Spelunky (Figure 1) is a 2D platforming game where the
protagonist must complete a series of maps through increas-
ingly hostile environments. As is suggested by the title, the
player takes control of a spelunker avatar and upon entering
the game, must delve deeper into the underground caverns
to ultimately win their freedom.

Spelunky was originally released in 2009 as a freeware game
developed in the GameMaker engine for Windows PC plat-
forms by Derek Yu [17]. The game has since been rebuilt
in the C++ language with enhanced graphics and is avail-
able on a variety of gaming platforms, such as PC, Mac
OS, Sony PlayStation and Microsoft Xbox consoles. The
full project and source code for the original, often referred
to as Spelunky Classic, is available from Yu’s video game

2While the scope of platformer games that exist is fairly
broad (Spelunky being one of them), we denote traditional
platformers to be extending from the design templates es-
tablished by the highly popular Super Mario Bros. series

Figure 1: A screenshot from Spelunky Classic, where the
player is currently navigating through ‘The Mines’ (world
1).

Figure 2: The scoreboard for a given playthrough after com-
pleting the first level. Note that the game records both time
and dollar value of all treasures found.

company Mossmouth [17]. It is important to recognise that
while there are two different implementations of the game
the differences in mechanics are relatively minor and in most
instances changes to the later version, known as Spelunky
HD, make the game more challenging for the player. There
are slight variations in control, but these do not cause a
fundamental change to the gameplay mechanics.

In order to fully explore the challenges of Spelunky, this sec-
tion will focus on the overall structure, core mechanics and
particular features of the game that will prove relevant later
in this paper.

3.1 Goals & Objectives
Despite the emphasis on money, a significant portion of the
community that Spelunky has fostered often ignore the score
and instead focus on the overall time taken to complete the
entire game. While time taken is noted throughout a players
progress, it is not recorded as the actual score of the game.
However, while there are communities of players who aim to
attain the highest score, there is an equally large online com-
munity who focus on achieving ‘speed-runs’, which attempt



Figure 3: The golden idol is a special treasure that must
be taken either to a level exit or a shopkeeper in order to
be redeemed for dollar value. However, picking it up often
causes environmental traps to spring.

to complete the game as fast as possible3.

3.2 Game Structure
The world of Spelunky is separated into levels, which the
player will typically enter from somewhere at the top. In
order to proceed to the next level, the player must find the
exit which is often hidden near the bottom 4. It is not made
apparent to the player where these exits are and they must
explore the environment in order to find them. In addition,
this issue is compounded by both mutators that impact the
level as well as how levels are constructed. These issues are
discussed in section 3.4.

A typical run of Spelunky requires the player to complete
four worlds comprised of four levels each: ‘The Mines’, ‘The
Jungle’, ‘The Ice Caves’ and ‘The Temple’. The last of these
sixteen levels, level 4-4, is referred to as ‘Olmec’s Lair’ and
requires the player to defeat the final boss in order to com-
plete the game.

It is important to note that upon completing a given level,
the player does not have the option to return back through
the door they travelled from. As a result, players must con-
tinue to head towards the final objective and cannot back-
track to acquire items they may have seen in previous levels.

In addition, the ‘typical’ run as noted earlier is one of a
number of routes that can be taken to complete the game.
We briefly summarise these variants.

3.2.1 Hidden Areas

There are multiple hidden areas to be found in both versions
of the game. The one area that exists in both Spelunky
Classic and Spelunky HD is the ‘City of Gold’: a hidden level

3At the time of writing YouTube user ‘Pibonacci’ holds the
world record of 1:55.353 which can be seen at https://www.
youtube.com/watch?v=rgCovly4uz4
4This sole exception to this is the hidden ‘Mothership’ level
in Spelunky HD that if discovered replaces level 3-4. In this
instance players begin at the bottom and must work their
way to the top.

that typically replaces a segment of the fourth world known
as ‘The Temple’. This environment is built entirely of gold,
allowing the player to attain a massive increase in score.
However, the City of Gold is only one of six hidden areas
found in Spelunky HD5. Access to these hidden areas proves
highly taxing given that hidden exits and special items must
be found in order to reach them, with similar challenges
found within the hidden areas themselves.

3.2.2 Shortcuts

It is possible to skip parts of the game in order to ease
the challenge of the overall game. An assisting non-player
character known as The Tunnel Man, will often greet the
player upon completion of worlds 1 through 3, offering to
create a shortcut that allows the player to skip all levels up to
that point in future play. In order for a shortcut to be built,
the player must provide a mixture of items and money to the
Tunnel Man. The total cost of each path varies with each
shortcut and payment is cumulative over time, allowing the
player to eventually unlock a given shortcut if they continue
to pay him. Once built, each shortcut is permanent and the
player can use it at the beginning of a new game to avoid
one or more worlds. However, it is important to note that
using these shortcuts renders the subsequent play invalid
for leaderboard scores. As such, many challenges6 both in
the Spelunky game itself and within the player community
forbid the use of shortcuts.

3.3 Core Mechanics
Spelunky ’s basic gameplay mechanics are similar to those
of popular 2D platformers such as Super Mario Bros. [9]
and Sonic the Hedgehog [13]. Allowing for the player to con-
trol the Spelunker avatar by walking, running and jumping
across the environment. However, unlike the more popu-
lar examples, there are mechanics that distinguish Spelunky
from its peers. The avatar shares a feature found within Prince
of Persia in that the player can grab onto ledges if they are
within proximity and cannot reach the top of a given plat-
form. However, unlike Prince of Persia, the player cannot
simply climb up to the platform and must instead jump to
gain sufficient height to reach their goal.

Like Mario, the Spelunker can incapacitate or kill certain
enemies by jumping on their head. While most enemies can
be defeated by jumping on them, others may require the use
of a weapon, such as the whip which is provided at the start
of play. In addition, the player can pick up and use a variety
of items that are provided throughout play to access hard
to reach areas of eliminate enemy characters faster.

3.3.1 Items

What separates Spelunky from other popular 2D platform-
ers is the ability to acquire and use items. In Spelunky clas-
sic, there are 43 different items that the player can use,
with Spelunky HD extending this total to 51. These items
fall under a number of categories:

5The complete set of hidden levels is comprised of The City
of Gold, The Black Market, The Haunted Castle, The Moth-
ership, The Worm and the secret 5th world entitled ‘Hell’.
6Both achievements delivered in Steam, PSN or Xbox Live
as well as challenges to unlock secret items.



Consumable Items that can only be used one time. Each
item has a limit on how many the player can carry.
While items such as bombs and ropes can be carried
in large quantities, others have a limit of one and a
replacement must be found before they can be used
again. Consumable items can often be replenished for
cash in shops found throughout the game world. The
exception being the Egyptian artefact ‘Ankh’ which
can only be found and used once per game.

Accessories Items that once collected, are permanently
owned by the player for the remainder of their playthrough
unless they can be replaced. Typically, accessories are
worn by the avatar in order to improve the strength
and resilience of the player. For example, spring shoes
can increase jump height while the cape reduces the
rate at which the avatar falls through the air. Oth-
ers allow for improved awareness of the environment,
with the spectacles revealing treasures hidden in the
rock and the compass adding an arrow to the display
which permanently points to the location of the current
exit door. It’s important to note that if an accessory
is picked up that affects the same mechanic, it will be
replace the original. For example, should the player
be using a cape and then pick up a jetpack (both of
which impact in-air control), then the cape is replaced
by the jetpack and a new cape must be found if the
players wishes to use it.

Weapons Weapons must be picked up by the player in or-
der to be used. Melee weapons such as the whip and
machete are close-range with varying damage and not
useful against distant enemies. This is addressed cour-
tesy of ranged weapons such as the boomerang and
shotgun. Players can also adopt items as makeshift
weapons by throwing them at enemies. Ironically, play-
ers cannot throw weapons at enemies and can only pick
up and drop them.

3.4 Level Design
One large element of the challenge in Spelunky is that each
level is driven by a procedural content generation algorithm,
i.e. each level is built algorithmically at runtime, with some
examples shown in Figure 5. This has a large impact on
the perceived difficulty of the game for human players given
the PCG ensures that the player never plays the same level
twice (or rather, it reduces the probability of such an oc-
currence to be extremely unlikely). Despite the adoption
of a PCG system, this issue is not as significant as is often
perceived, given that the PCG system adheres to a strict
series of rules in its construction that ensure a solution path
exists for all generated instances. This element is further
elaborated upon in section 4. This paper relies upon the
authors own examination of the publicly available source
code in conjunction with the excellent overview provided by
Kazemi found in [6].

Once a level is established, it is populated from a collection
of potential enemies. The range of enemies is broad given
many are only encountered should the player visit partic-
ular worlds of the game. As a result, there are 25 differ-
ent kinds of enemy in Spelunky classic, with the HD con-
version extending this count to over 50. Enemy difficulty

Figure 4: The shopkeeper allows the player to exchange
money from treasures for specific items available in the store.
These items change in each shop instance.

and strength varies, with some exhibiting simple pattern pa-
trols or behaviours, while others actively pursue the player
should they enter a given range. The outlier in this case
is the ‘Shopkeeper’ a NPC responsible for manning stores
that players visit to buy new items shown in Figure 4. The
Shopkeeper remains friendly towards the player unless they
either attack or attempt to steal from him. This results in
the NPC becoming overly aggressive towards the player. In
addition, this has a knock-on effect of making all subsequent
Shopkeepers encountered in the game antagonistic towards
the player and the level generator will place additional Shop-
keepers near future level exits.

4. COMPLEXITY ANALYSIS
The focus of our analysis is to establish what is the most ac-
curate classification of Spelunky. As discussed in [15], most
titles that are deemed interesting for a human to play are
typically found within the range of NP-complete to PSPACE-
complete. As such, we are aware of the bounds in which Spelunky
may be found within. For this analysis, we rely upon the pre-
established meta-theorems discussed in [15] and the frame-
work for proofs for other 2D platforming games found in [2].
Following from this work, we construct scenarios that can
occur in the game world that provide evidence of our theo-
rems. These examples should hold for a generalised version
of Spelunky. This is achieved by constructing particular sce-
narios using the built-in level editor of Spelunky Classic.

4.1 Existence Within PSPACE
It is important to acknowledge at this stage that both ver-
sions of Spelunky exist within PSPACE. This is established
quite easily courtesy of discussion raised in [2], which states
that generalisations of commercial single-player games are
likely to exist within PSPACE. This is further corroborated
in [15] courtesy of Savitch’s theorem [10], given that enemies
in Spelunky exhibit either deterministic or simple pseudo-
random behaviour and that each level configuration can be
stored in linear space.

4.2 Environment Traversal
We begin by considering the need in Spelunky to navigate
the environment in order to reach an exit door. By adopting



(a) A level where the player must cross 10
‘rooms’ built by the generator.

(b) A level with incentive to explore cour-
tesy of a golden idol in the centre.

(c) An procedurally generated level that
has a ‘snake pit’ at the bottom.

Figure 5: A collection of procedurally generated levels, where the main solution path is constructed (faintly visible as a red
line), before ‘padding’ the rest of the world accordingly. These screenshots recorded courtesy of the tool developed in [6].

Figure 6: An example that satisfies the assertion of Theo-
rem 1, whereby the spelunker must a single-use pathway to
reach the exit.

Metatheorem 1 listed in [15], we can establish the following
theorem:

Theorem 1. The existence of both location traversal and
single-use pathways classify Spelunky as NP-Hard.

We can provide proof of this theorem courtesy of a reduc-
tion from a Hamiltonian cycle. Whereby nodes are locations
the player must visit and edges are the single-use pathways
that exist between them. Spelunky exhibits both traits: the
former is achieved not only by the need for the player to
discover the valid path through the level, but also the desire
to collect gold in order to increase their score. Meanwhile
the latter trait is exhibited in circumstances whereby the
player can no longer reach a previously established area of
the level.

If we consider the scenario shown in Figure 6 where the
avatar must fall down a large drop while having only two
units of health. Given the height, the spelunker will survive
the fall but only have one unit of health remaining. Since

Figure 7: An example that satisfies the assertion of The-
orem 2, the spelunker must use a collectible token (a
parachute) in order to cross a ‘toll road’ that exists in the
game or face certain death.

the player is not carrying any items to help climb back up,
this maintains the case of single-use pathways.

Our theorem need not concern itself with whether a solution
path exists in the context of a regular Spelunky game, given
that one is always guaranteed by the generator. If we view
the level space as a 4×4 grid, the generator will navigate each
‘room’ in the grid until a solution-path is constructed from
the starting position in the top row, to the exit door, which
will be placed on the bottom row. Only once a solution-
path has been built are side rooms with no exits built into
the environment [6]. As shown in Figure 5 this can result
in solution paths of varying lengths. While the lower bound
for this can be established as four rooms, it is noted in [6]
that such solutions, which would require multiple top and
bottom exits, typically result in a ‘snake pit’ as shown in
Figure 5c, as the generator attempts to force a larger path
to be constructed.



4.3 Items Allow For Crossing ‘Toll Roads’
If we consider Metatheorem 2.a found in [15, p.600], it notes
that a game can be denoted as NP-Hard should a game fea-
ture “collectible tokens, toll roads and location traversal”.
While we have previously established the notion of location
traversal courtesy of Theorem 1, we must address the notion
of a toll road: a part of the game world whereby consump-
tion of a collectible token must occur in order for the avatar
to traverse it. A collectible token is an item that must be
found in-game and used for some purpose. If the player does
not have the required token, then they cannot traverse the
space. With this in mind, we identify the following:

Theorem 2. The existence of consumable items that al-
low the Spelunker to traverse hazardous environments only
once classify Spelunky as NP-Hard.

This assertion can be satisfied courtesy of the example shown
in Figure 7. While similar to Figure 6, the Spelunker cannot
successfully traverse the gap, given he only has one unit of
health. This will result in death. However, a parachute
has been provided that will allow for safe passage but can
only be consumed once. This creates a toll-road given that
the Spelunker cannot return back to the original point due
to a lack of resources. It is worth noting that it is noted
in [15] that some tokens can be cumulative; allowing for
the player to carry several of the same type of token. The
example in Figure 7 does not meet this description given it
is a consumable item (established in section 3.3.1) with a
carry-limit of one.

4.4 Bombs and Ropes Act As ‘Keys’
Similar to the toll-road problem, Metatheorem 3 of [15] iden-
tifies door and key mechanic: whereby the player can collect
‘keys’. Keys are items that enable the opening of ‘doors’,
thus enabling the player to continue through a particular
problem. Much like tokens, keys can must be collected and
can be cumulative, allowing the player to carry multiple keys
at once. We can consider many of the consumable items
in Spelunky as either keys or tokens, given that they enable
access to parts of the game world that would otherwise not
be possible. While we have already shown items can be used
as tokens in Theorem 2, we present Theorem 3, inspired by
Metatheorem 3.b of [15].

Theorem 3. The existence of consumable items such as
bombs and ropes to create ‘doorways’ to enable access to un-
reachable areas, combined with the need for location traversal
make Spelunky NP-Hard.

Players will often find themselves in circumstances where
they have placed themselves in a difficult position. Falling
down parts of the path which are in fact dead ends is a com-
mon occurrence and in some cases may be difficult to return
back to their starting point (see the ‘snake pit’ shown in Fig-
ure 5c as an example). However, the player can use certain
consumable items to open ‘doorways’ in the world thus pre-
venting the player from ending the game prematurely given
they have effectively lost.

Examples that satisfy out theorem can be found in Figures 8
and 9 showing the use of bombs and ropes respectively. In
Figure 8, we see that the player is effectively blocked from
reaching the exit due to a wall. The use of the one bomb
in the Spelunker’s possession, placed in the appropriate lo-
cation, allows for the wall to be blown apart, thus creat-
ing a permanently open doorway between the two locations.
Meanwhile, Figure 9 achieves a similar effect through the use
of ropes, whereby the Spleunker deploys a rope in position
such that it enables access to the exit door.

A further argument could be made to adopt this theorem
in the context of shortcuts provided by the Tunnel Man
mentioned in section 3.2.2. In this case the player must re-
peatedly provide the NPC with gold and consumable items.
By this token, we could also consider gold cumulative keys,
given that it enables access to permanent doorways that
avoid entire segments of the game.

5. DISCUSSION
In section 4, we have denoted that both iterations of Spelunky
exist within PSPACE and Theorems 1 through 3 help clas-
sify the problem as NP-Hard. These theorems have focussed
largely on generalised instances of the Spelunky problem,
rather than focussing analysis of the ‘core’ game, as players
attempt to navigate the complete sequence of levels. This
could lead to further clarification of this work and discussion
of the challenges this game presents.

It’s important to acknowledge that the analysis provided in
section 4 provides us with evidence that suggests Spelunky
is in-line with its peers that are established benchmarks
within the artificial intelligence community. Both Super
Mario Bros. and Pac-Man have been explored at length
in [2] and [15] respectively. In both cases, these games
have been classified as NP-Hard. There is no mention of
whether there is any discernible difference between Pac-
Man and Ms. Pac-Man which differ largely through non-
deterministic ghost execution. Given that the discussion
raised in [15] is focussed largely on the maze construction
and more abstract behaviour of the ghosts (moving from
hunt to evade states based on power pill consumption), it
would appear that both these existing benchmarks share
the same complexity as Spelunky. In addition, popular AI
benchmark Starcraft is proven (rather simply) to be NP-
Hard in [15], but it is noted that the real complexity is ex-
pected to be EXP-Hard due to the fact it is a competitive
two player game.

What such complexity analysis fails to address is the chal-
lenges that the Spelunky domain creates for AI applications
that distinguish it from its contemporaries. As noted pre-
viously, Spelunky shares many mechanics and tropes with
classic 2D platformers such as Super Mario Bros. However,
as is evident throughout section 3, there are many facets of
the design that distinguish Spelunky from commercial games
previously adopted as AI/CI benchmarks.

5.1 PCG For Level Construction
Perhaps the critical difference is the use of a PCG system
to build levels at runtime. This introduces a new element to
gameplay: the need to search for the exit. This is an issue
not found in either Super Mario Bros., where the flagpole



(a) Spelunker has one cumulative token, a bomb, but cannot reach
the exit.

(b) By using the bomb, the Spelunker creates a path that continues
to be accessible after items consumption.

Figure 8: An example that satisfies Theorem 3, in that a ‘doorway’ is built by using a cumulative key, in this case a bomb.

is always at the far right of the level, or Ms. Pac-Man for
which there is no exit, given the collection of pills is the con-
dition by which a level is completed. This compounds the
existing problems faced by research conducted previously in
the Mario AI Competition, originally detailed in [14], given
that any player (be they autonomous or human) only know
that the exit is beneath them. They must subsequently nav-
igate the map to find the exit. While Super Mario Bros.
faces a similar problem in that the exit is ‘somewhere to the
right’, the game operates within a view frame which is fixed
on the vertical axis. Meaning the player need only concern
themselves with moving this frame along the horizontal axis
in order to reach the flagpole. Spelunky provides a more chal-
lenging problem given not only must players move the view
frame along both horizontal and vertical and axis in order to
discover the exit location. This exit, as noted in section 4.2,
will always appear on the bottom row of the 4×4 room ma-
trix, thus providing some general direction for any search
process to adopt. Despite this, the non-linear arrangement
of the map creates dead-ends and force backtracking that
may not be possible as mentioned in Theorem 1. Further-
more, the use of PCG as a level construction mechanic adds
a new wrinkle to an already challenging task: there is no
guarantee that the exit will be in the same place the next
time the player visits this level. As such, an effort must be
made to ensure the search process explores the environment
while adopting knowledge accrued from the current permu-
tation of the level.

5.2 Treasures as Resources
The collection of treasures in Spelunky compound the nav-
igation challenge, given that they are often in areas off the
path to the exit. In addition, as discussed in section 3.1,
collection of treasures not only impacts score, but provides
currency for valuable resources that enable more effective
navigation. This distinguishes the game from Super Mario
Bros., where similar items are always in fixed positions and
coin collection occurs periodically throughout a linear path.
In addition, coins in Mario eventually provide players an op-
portunity Spelunky does not: replaying segments of the level

upon death.

We argue that treasures in Super Mario Bros. merely create
temporary distractions that can easily be ignored should the
player not deem it necessary. This is evident in the most
successful Super Mario bots detailed in [5, 14], where the
emphasis was purely on navigation and enemy avoidance.
By comparison, treasure in Spelunky is a valuable resource
that players ignore at their peril. In addition, it is littered
treasure throughout a disjointed environment full of dead-
ends and traps. This presents an interesting multi-objective
optimisation problem which is similar, albeit more complex
than Ms. Pac-Man, since in the latter the entire level is
visible in a single view-frame. This means that all pills and
fruit are immediately visible upon their insertion into the
game world and the player can begin to plan accordingly
against the four NPCs found in the maze. Furthermore,
completion of the level in Ms. Pac-Man is reliant upon
treasure collection and does not carry time-constraints. By
comparison, players only become aware of the existence of
treasures and indeed enemies in Spelunky once they have
seen them in the view-frame. Planning to acquire treasures
and factor enemies into that decision making process can
only occur once their existence has been confirmed by the
player. Meanwhile, other treasures only become apparent
once parts of the terrain are destroyed. This reinforces the
relationship between collecting treasures and purchasing re-
sources: given that many treasures can only be acquired by
first spending some that has previously accrued on items.

5.3 Terrain Deformation and Path Refinement
Lastly, we refer to Theorems 2 and 3 in that the adoption
of items as cumulative keys to permit access to areas of the
game map that would otherwise not be possible. This opens
up another key issue that separates Spelunky from its con-
temporaries, in that the navigation issues already discussed
in this section can actually be reduced by smart adoption
of items. This introduces an entirely new optimisation task:
minimising the distance travelled to reach the exit in con-
trast to the amount of resource required to achieve this re-



(a) The Spelunker is carriyng one rope, while currently unable to
reach the exit door.

(b) By using a rope, the Spelunker creates a path that continues to
be accessible after items consumption. Though it is worth noting the
player can still kill themselves if they do not use this path wisely.

Figure 9: An example that satisfies Theorem 3, in that a ‘doorway’ is built by using rope, which we consider a cumulative
key.

duction. This presents a new challenge that is largely at
odds with the previous task: exploring the game world to
find treasures to pay for the items we wish to use.

6. CONCLUSION
In this paper we have identified the core mechanics and
gameplay rules of 2D platformer video game Spelunky. This
effort is driven largely by a desire to classify the ‘hardness’
of generalised instances of the game and raise this prob-
lem for further discussion. In addition, this paper identifies
that Spelunky is expected to be at minimum as complex as
existing benchmarks for artificial and computational intelli-
gence techniques.

7. ACKNOWLEDGEMENTS
The author wishes to thank Daniel Scales for contributions
and feedback on this paper. In addition, thanks must be-
given to the contributors of the Spelunky Wiki7, which acted
as a useful reference for differentiating the content of Spelunky
Classic and Spelunky HD.

8. REFERENCES
[1] G. Aloupis, E. D. Demaine, A. Guo, and G. Viglietta.

Classic nintendo games are (np-) hard. arXiv preprint
arXiv:1203.1895, 2012.

[2] G. Aloupis, E. D. Demaine, A. Guo, and G. Viglietta.
Classic nintendo games are (computationally) hard. In
Fun with Algorithms, pages 40–51. Springer, 2014.

[3] E. D. Demaine. Playing games with algorithms:
Algorithmic combinatorial game theory. In
Mathematical Foundations of Computer Science 2001,
pages 18–33. Springer, 2001.

[4] M. Forǐsek. Computational complexity of
two-dimensional platform games. In Fun with
Algorithms, pages 214–227. Springer, 2010.

7spelunky.wikia.com/wiki/Spelunky_Wiki

[5] S. Karakovskiy and J. Togelius. The mario ai
benchmark and competitions. Computational
Intelligence and AI in Games, IEEE Transactions on,
4(1):55–67, 2012.

[6] D. Kazemi. Spelunky generator lessons, 2013. [Online;
accessed 08-February-2015].

[7] G. Kendall, A. J. Parkes, and K. Spoerer. A survey of
np-complete puzzles. ICGA Journal, 31(1):13–34,
2008.

[8] Midway Games. Ms. Pac-Man. Namco Bandai Games,
1982.

[9] Nintendo EAD. Super Mario Bros. Nintendo, 1985.

[10] C. H. Papadimitriou. Computational complexity. John
Wiley and Sons Ltd., 2003.

[11] Rare Ltd. Donkey Kong Country. Nintendo, 1994.

[12] P. Rohlfshagen and S. M. Lucas. Ms pac-man versus
ghost team cec 2011 competition. In Evolutionary
Computation (CEC), 2011 IEEE Congress on, pages
70–77. IEEE, 2011.

[13] Sonic Team. Sonic the Hedgehog. Sega, 1991.

[14] J. Togelius, S. Karakovskiy, and R. Baumgarten. The
2009 mario ai competition. In Evolutionary
Computation (CEC), 2010 IEEE Congress on, pages
1–8. IEEE, 2010.

[15] G. Viglietta. Gaming is a hard job, but someone has
to do it! Theory of Computing Systems,
54(4):595–621, 2014.

[16] G. Viglietta. Lemmings is pspace-complete. In Fun
with Algorithms, pages 340–351. Springer, 2014.

[17] Yu, Derek. Spelunky. Mossmouth, 2009. [Online;
accessed 08-February-2015].


