Learning Behavior from Demonstration in Minecraft
via Symbolic Similarity Measures

Brandon Packard
Drexel University
Philadelphia, PA 19104, USA
btp36@drexel.edu

ABSTRACT

This paper focuses on the challenging problem of learning
behavior in a complex environment purely form observa-
tion of human performance. Specifically, we explore the
performance of a collection of symbolic similarity measures
in modeling the behavior of a human performing tasks in
the Minecraft video game using learning from demonstra-
tion. We also analyze the performance of these measures
using four different symbolic representations for the train-
ing data.

Categories and Subject Descriptors
1.2.1 [Artificial Intelligence]: Applications and Expert
Systems: Games

General Terms
Theory, Algorithms

1. INTRODUCTION

This paper focuses on Learning from Demonstration (LfD)
[23, 4, 18], also known as Learning from Observation, Be-
havioral Cloning, or Apprenticeship Learning. Specifically,
the goal of the work presented in this paper is: given a set
of traces of the behavior of a human in several scenarios in
a given domain (a computer game, in our case), learn how
to predict her behavior in a similar scenario. This task is
interesting, since it has the potential to enable generating
AT for games by demonstration.

A significant amount of work exists in LfD (as discussed
later in Section 7). In this paper, we focus on a Case-based
reasoning (CBR) [1] approach to LfD, and specifically, on
evaluating the performance of symbolic similarity measures
for this task. Case based reasoning (CBR) is a problem solv-
ing methodology based on solving new problems by reusing
past solutions. CBR is closely related to lazy supervised
machine learning techniques such as the nearest-neighbor
rule [7]. Specifically, a CBR system learns by storing prob-
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lem/solution pairs (cases) in a case base, and solves new
problems by identifying closely related problems in the case
base, and adapting the stored solutions. One of the key un-
derlying reasoning mechanisms of CBR is similarity assess-
ment: CBR systems usually employ a similarity measure to
determine which cases from the case base are most similar
to the problem at hand. CBR has been applied to a number
of game Al tasks such as playing RTS games [3, 26, 17], FPS
games [5], or Tetris [11, 20], among others.

In this paper, we focus on learning complex single-player
behaviors, and study symbolic representations of the world
state and the performance of a collection of state-of-the-
art symbolic similarity measures. We study the results of
using these representations and measures to learn complex
player behaviors in the Minecraft computer game. Our goal
is to study the strengths and weaknesses of using a symbolic
representation in this application domain, which will aid in
the development of robust LfD methods.

To evaluate the similarity measures of interest, we recorded
traces of human behavior in Minecraft, containing both the
evolution of the world state and all the player actions. Four
different similarity measures were employed: Jaccard sim-
ilarity, Levensthein similiarity, Weighted Levenshtein simi-
larity, and propositionalization followed by a Hamming dis-
tance. Additionally, we compared the performance of each
similarity measure using four different types of world rep-
resentations, which we call: Original, Filtered (removing
data points where the human was not performing any ac-
tion), Discretized (where numerical values were discretized
into discrete categories), and traces that are both filtered
and discretized. We describe each of them below.

The remainder of this paper is organized as follows. After we
briefly discuss our problem statement, Section 2 introduces
our application domain. Section 3 describes the represen-
tation formalism used to describe world states, actions and
traces. After that, Section 4 presents the similarity mea-
sures employed in our study. Sections 5 and 6 describe our
experimental setup and results, respectively. Finally, the
paper concludes with related work and conclusions.

1.1 Problem Statement

The problem that we are trying to solve is learning to per-
form complex tasks by observing human behavior, with the
long term goal of allowing to define AI behaviors by mere
demonstration. Specifically:



Figure 1: A screenshot of Minecraft.

Given: A collection R = {Ru, ..., Rn} of previous traces of
human behavior, where each trace contains the behav-
ior of a human in a given scenario, in order to achieve
a given goal g.

Predict: The behavior of the human in a new, similar, sce-
nario when the human is trying to achieve the same

goal g.

In order to address this problem, we used the Minecraft video
game as our application domain, and recorded traces of a
human trying to achieve a specific goal in Minecraft (“obtain
a piece of cobblestone”).

2. MINECRAFT

Minecraft (shown in Figure 1) is an expansive, open ended
game that focuses on exploration and building. Although
there are enemies to fight and items to collect, the game
imposes no true goal on the player, instead letting them set
their own. The players move about in a 3-dimensional world,
which is divided into blocks that (with a few exceptions) the
player can pick up and put down as they please. Players are
able to kill enemies, build homes, tear down structures, and
collect items to craft new tools. Due to these attributes,
Minecraft requires both short term, almost reflexive deci-
sions as well as long-term planning. For the purposes of this
paper however, the goal pursued is very specific, and only re-
quires a small set of reactive actions. Specifically, Minecraft
exhibits the following properties:

e Almost deterministic: Most of Minecraft is determin-
istic, but it also boasts some stochastic features, such
as the spawning of enemies or what items drop when
certain blocks are broken.

e Partially Observable: How far a player can be seen
depends on their settings, but even the farthest vision
range is a very small fraction of the world.

e Dynamic: The environment is rich with other agents,
in the form of passive and aggressive entities. Pas-
sive entities, such as cows or pigs, tend to be hunted

X162 = holding(17,1,0) A position(—108.0,63.0, 155.0) A
rotation(—29.7,51.0) A selectedBlock(17,—109, 66,156) A
target(none, 0, —1,0) A block(1,16563) A
block(2,5720) A block(3,1543) A block(4,83) A
block(17,185) A block(18, 3962) A
level(0) A health(20) A food(20) A
pMob(pig, —94,64,143) A pMob(pig, —110, 64, 141) A
pMob(pig, —103,63,137) A pMob(pig, —99,63,137) A
pMob(sheep, —139,65,145) A pMob(sheep, —137,68,151) A
pMob(sheep, —137,65,147) A pMob(sheep, —137,67,149) A
pMob(pig, —91,68,120) A groundltem(17,—109,64,157) A
groundltem(17,—108,64,157)

Y162 = rotating(0.15,0.0), chopping Wood (—1)

Figure 2: An example world state, with its corre-
sponding action from one of the original traces.

by the player for food and items. Aggressive entities,
however, will actively pursue the player and try to de-
stroy him. These entities, along with the passage of
time, comprise the dynamic parts of the environment,
and act independently of the player.

e Continuous: The environment of Minecraft is contin-
uous, with the position and rotation of the player and
other entities being measured as real values.

All of these factors taken together make Minecraft an ex-
cellent domain in which to study the modeling of complex
behaviors. Additionally, although in this paper we focus
on reactive behaviors, Minecraft affords an opportunity to
model both short and long term plans.

3. TRACES

To accomplish the goal of learning to perform complex tasks
from observing a human playing Minecraft, data was gath-
ered from the game in the form of traces. A trace R =
[(X0,Y0), ..., (X7, Yr)] is a sequence of entries, where each
entry (X¢,Y;) contains the world state X; at a given time ¢,
and the actions Y; the player executed at time t.

As the player moves throughout the Minecraft environment,
the actions Y; capture what the player is actively doing at
that time — such as walking, running, and mining. The world
state X captures information about the state of the world at
that time, including such data points as position, rotation,
location of nearby entities, inventory contents, and health.
A normal game of Minecraft runs at 20 ticks (the in-game
unit of time) per second. Data for the traces is sampled once
a tick.

The world state is represented as logical clauses of the form
X = x0 A1, ... Ny, Each predicate x; takes the form of
a Prolog term, and represents some aspect of the world. For
example, the term health(20) would mean that the player
has 20 health. Figure 2 shows an actual world state with
its corresponding action. Although world states may have
an arbitrarily large number of predicates, those predicates
belong to 15 different types (position, rotation, block, etc.),
some of which can appear multiple times per entry.

Similarly, actions are also represented as logical clauses Y; =



[yo A y1 A ... A ym]. Each predicate y; represents an ac-
tion the player is taking at that time, also in the form of
Prolog terms. Notice that we need to represent actions as
clauses, since players might execute more than one action at
a time (walking while turning and swinging a weapon), or
even no actions. For instance, in the example in Figure 2,
the player was rotating at the same time as chopping wood
(choppingWood(—1) means the player is chopping wood with
its bare hands).

In the remainder of this paper we will use the term original
traces to refer to traces where all the information above is
recorded exactly as it is collected from the game. In addition
to these original traces, we also constructed three additional
types of traces in the following way:

e Discretized traces: which take some of the numeri-
cal values and replace them with discretized values,
and turns absolute coordinates into relative coordi-
nates. For example, rotation(45,75) might become
rotation(NorthWest, Up). Four different discretiza-
tions are performed, as seen in Table 1.

e [ltered traces: which have any entries where the player
was doing nothing removed.

e Discretized-Filtered traces: combine both these post-
processing steps.

Our current dataset consists of 2 sets of 5 traces each, for
a total of 10 traces. Each set was obtained by creating 5
exact duplicates of a freshly generated world state, and then
attempting to carry out the actions in as similar a way as
possible for each instance. Both sets had the same goal
of obtaining a piece of cobblestone, and all 10 traces were
taken by the same person within the research group. As
obtaining a piece of cobblestone is a very early-game goal,
the sequence of tasks that the player performed was the same
for all 10 traces. The only difference between sets was the
starting state of the world. Specifically, to obtain a piece
of cobblestone, the player needs to: 1) first, collect logs, 2)
then craft some planks, 3) craft a workbench, 4) craft some
sticks, 5) place the workbench, 6) craft a wooden pick, 7)
and finally mine some stone (which automatically turns into
cobblestone). Some of these steps involve navigating around
the map trying to find the appropriate blocks or locations
for the different tasks.

4. SYMBOLIC SIMILARITY MEASURES

In order to test the collection of similarity measures in our
study, and to study the performance of symbolic represen-
tations of the world, we set up a CBR system based on a
nearest neighbor retrieval algorithm [7]. Basically, given a
trace R'®*' (the test trace) for which we would like to pre-
dict behavior by learning from a collection of training traces
R ={Ry,...,R,}. Given an entry (z:,y:) € R'** in the test
trace, the CBR system finds which is the entry in the train-
ing traces that has the most similar world state to x:, and
the corresponding action in such entry is used to predict the
behavior of the human. To determine the prediction error
of our method, we then compare our prediction against ;.

We evaluated the following similarity measures:

o Jaccard: Given two clauses (represented as sets of terms),

we define the Jaccard similarity as the size of their in-
tersection over the size of their union, which can be
characterized by the following equation:

_ | XnY]|

JXY) = 507

where X NY is a clause that contains only those pred-
icates present both in X and in Y, and X UY is a
clause that contains the union of predicates in X and
in Y. || represents the number of predicates in a
clause. Notice that for a predicate to be in the in-
tersection, it must be a perfect match. For example,
{pMob(pig, —94,64,143) }U{pMob(pig, —94,64,142)} =
(, since the last parameter does not match.

Levenshtein: Given two clauses, the Levenshtein dis-
tance counts the number of edit operations that we
need to perform to one of the clauses, in order to con-
vert it into the other. The edit operations that we
consider are adding a value, removing a value, and
substituting a value by another. Our similarity mea-
sure between clauses is based on first computing the
edit distance between the individual terms that com-
pose the clauses, and the aggregating them to generate
the final distance. To measure distance between two
terms, we first represent each of them as a tree, and
then use Pawlik and Augsten’s tree edit distance mea-
sure [19], we denote this distance as dr(z1, z2).

Given that a clause can be seen as a set of terms,
computing the similarity between two clauses X; and
X> with a large number of terms using the edit dis-
tance might have a prohibitive cost. For that rea-
son, we employ an approximation algorithm (Algo-
rithm 1). This algorithm works by first computing a
matrix with as many rows as terms in X; and as many
columns as terms in X2. Each position of this ma-
trix contains the similarity between the corresponding
row and column terms. This similarity is computed as
1 — 0 (zi,z;)/max(|z;:|, |z;]), i.e., by computing the
edit distance, normalizing it, and then turning it into
a similarity. Here, |z;| represents the size of a term,
measured as the number of edit operations needed to
construct this term from scratch from the empty term.
Then, the similarity between the two clauses is com-
puted by adding the maximum similarity value in each
column of this matrix, and dividing by the number of
terms in X (the largest of the two clauses). This ap-
proximation algorithm thus has polynomial cost with
respect to the number of terms in the clauses, instead
of the exponential cost required to compute the exact
edit distance.

Propositional: finally, we implemented a proposition-
alization approach [14], where we converted the world
state into a feature vector of fixed length, where each
feature is either numerical or categorical. In order to
achieve that, we only considered the closest aggressive
mob (enemy) and the closest non-aggressive mob (e.g.,
an animal), in order to make the feature vector fixed
length. We also only considered the most common
block types in the traces in our dataset. The resulting
feature vector had 90 features. After this conversion



Original Predicate

Original Values

New Predicate(s)

New Values

rotating(c, B) o € [—180,180] zRotation(X),yRotation(Y) | Where:
€ [—180, 180
pel > 180] X € {Left, Center, Right}
Y € {Up, Center, Down}
rotation(c, B) a € [0,360] rotation(D, H) Where:
€ [—90,90
Bel } D € {S,SW,W, NW, N,

NE,E, SE}
H € {Down, Center,Up}

amob(type, Ta, Ya, Za)
pmob(type, Ta, Ya, Za)

Where (Za,Ya,za) are the
absolute coordinates of an
enemy/creature, and type
is the specific type of en-
emy /creature.

amob(type, Tr, Yr, 2r)
pmob(type, Tr, Yr, zr)

Where (zr,yr, zr-) are the rel-
ative coordinates of an en-
emy/creature to the player,
and type is the specific type of
enemy /creature.

groundltem(type, Ta, Ya, za)
projectile(type, Ta, Ya, Za)

Where (zq,Ya,2q) are inte-
gers representing the absolute
position of the dropped
item/projectile, and type
identifies the specific type of

groundltem(type, Tr, yr, zr)

Where (zr,yr,2r) are inte-
gers representing the position
of the dropped item/projectile
relative to the player, and type
identifies the specific type of

item/projectile.

item/projectile

Table 1: Predicates that are discretized (or transformed from absolute to relative) and the resulting predi-
cates. Note that there are many other predicates that are not discretized and therefore are not included in

this table.

Algorithm 1 clauseSimilarity (X1,X2)

1: if ‘X1| < |X2| then

2 return clauseSimilarity(Xz, X1)

3: end if

4: n1:|X1|,n2:\X2|

5: M = n1 X nz matrix of zeroes.

6: for x; € X; do

7: for x; € X> do

8 M(ij) = 1 - 61(wi,25)/maa(|ai], o))
9 end for

0: end for

1: return %Z

[ENrey—

5 (mafﬂizl...nl M(7'7 ]))

j=l..n

was done, we employed a Hamming distance (count-
ing the number of features that are an exact match
between the feature vectors of two world states).

The Levenshtein distance is a more fine-grained measure
than Jaccard (which operates at the granularity of predi-
cates), but it also has a higher computational cost. In order
to cull the runtime to a reasonable level, a technique called
MAC/FAC [12] was used for retrieval in the implemented
CBR system. MAC/FAC uses a two stage retrieval process:
given that we want to find the nearest neighbor from a large
collection of entries, we first use a computationally cheap
similarity measure to filter among those entries, and then
use a more expensive method to compute structural matches
on the entries returned from the first stage. Specifically, we
used a Jaccard Similarity to find the 10 nearest neighbors,
and then the Levenshtein distance to choose which among
those is the closest.

4.1 Levenshtein Weights

In the basic definition of Levenshtein Distance each of the
edit operations (adding, removing, or substituting any el-

Items
Held Items Blocks
PN /N

Wooden Pick Swords  Dirt

PN

Gold Sword  Iron Sword

Stone

Figure 3: An excerpt of the taxonomy of concepts
used in the domain of Minecraft.

ement or subelement of a tree) is given a cost of 1. To
increase the accuracy of this technique, we provided back-
ground knowledge about how similar or different the differ-
ent constants appearing in the terms are. This is done by
creating a taxonomy of the different concepts appearing in
Minecraft, grouping them by our intuitions about their sim-
ilarity (an excerpt of this taxonomy is shown in Figure 3).
Then, we used this taxonomy to calculate edge weights be-
tween each of the concepts in this taxonomy according to
the following formula (adapted slightly from [13]):

A=BEY (do)+1\" 1y
() )( () > He(e) =~ 10()]

where w and ¢ are concepts, a and § are constants, F(p) is
the entropy of p, F is the average entropy, d(p) is the depth
of p, and IC(z) is the information content of z, defined as
log~' P(z) (where P(z) is the probability that a given game
entity is an instance of concept z). The distance between
any two concepts is then the sum of all edge weights on
the shortest path between them. Once these distances are
calculated, they are used as the costs for the substitution
operation in the Levenshtein distance.

w(c,p) = (ﬁ+



Original Filtered Discretized Filtered /Discretized

0-1 JL LL 0-1 JL LL 0-1 JL LL 0-1 JL LL
Random 0.841 0.823 0.823 | 0.973 0.919 0919 | 0.973 0.919 0.919 | 0.949 0.907 0.907
Most-likely 0.630 0.630 0.630 | 0.794 0.765 0.765 | 0.630 0.630 0.630 | 0.776 0.759  0.759
Jaccard 0.634 0576 0.542 | 0.710 0.606 0.534 | 0.680 0.625 0.601 | 0.707 0.604 0.560
Levenshtein 0.619 0.556 0.550 | 0.698 0.580 0.568 | 0.667 0.606 0.601 | 0.683 0.568 0.558
W. Levenshtein | 0.619 0.557 0.551 | 0.696 0.578 0.566 | 0.662 0.606 0.601 | 0.682 0.566  0.557
Propositional 0.663 0.577 0.540 | 0.722 0.583 0.512 | 0.649 0.563 0.541 | 0.672 0.524 0.482

Table 2: Average loss for various algorithms and loss functions, evaluated using a one-vs-one procedure (lower
is better). Results which are statistically significantly better than the rest are underlined.

Finally, even if some of the values in the terms in our dataset
are numeric, in the experiments reported in this paper we
consider them as if they were categorical constants (i.e., 1.0
is equally distant from 2.0 than from 3.0).

S. EXPERIMENTAL EVALUATION

In order to evaluate our approach, we used “obtaining a piece
of cobblestone” as the goal g to achieve. We collected traces
using two different worlds, collecting 5 different traces in
each world, for a total of 10 traces, all taken by one person.
Although the world is procedurally generated, the same seed
was used for each set of 5, and traces were taken from the
moment the world was first generated, for consistency. The
average trace length is 723 entries, which is 40 seconds of
gameplay.

We evaluated the performance of our approach using a num-
ber of loss functions:

e (0-1 Loss: returns 1 if the predicted actions match the
actual actions exactly, and 0 otherwise.

e Jaccard Loss (JL): we define the Jaccard Loss as one
minus the Jaccard similarity between the predicted ac-
tions and the ground truth.

e Levenshtein Loss (LL): Levenshtein distance between
the predicted action set and the actual action set.

We report average loss for all the entries of the traces in the
test set. We note that 0-1 loss is always lower or equal to
the Jaccard loss, which is lower or equal to Levenshtein.

6. RESULTS

Table 2 shows the average loss for all 4 trace types and all 3
loss functions, evaluated using a one-vs-one procedure (for
each pair of traces in our dataset, using one as the test set
and the other as the training set). The loss values are calcu-
lated by using the respective loss function of the predicted
actions compared to the actual actions in the test trace. For
the 0-1 loss columns (“0-17), the higher the number in the
table, the less entries that were correctly predicted by that
method. For example, a value of 0.000 represents that every
entry was correctly predicted, and an entry of 0.500 repre-
sents 50% of actions were correctly predicted. Statistical
significance was tested using a paired t-test.

We compared the results against a series of baseline predic-
tors (“Random”, “Most-likely”). The first row (“Random”)

in the table shows the results of retrieving one of the entries
in the training set at random, and using it as the prediction.
The second row (“Most-likely”) shows the results from al-
ways predicting the set of actions that was the most common
in the training set. The other 4 rows (“Jaccard”, “Leven-
shtein”, “Weighted Levenshtein”, and “Propositional”) show
results for generating a prediction using a nearest neighbor
algorithm with the corresponding similarity measure. As ex-
pected, the Levenshtein similarities achieve the best results
when using the original traces. However, surprisingly, the
simple propositional distance outperforms Levenshtein when
the traces are discretized. Although further experiments are
needed to determine the cause, we hypothesize that this is
caused by the two-step retrieval process (MAC/FAC) used
for Levenshtein, where the first pass uses the Jaccard sim-
ilarity, thus limiting the performance of Levenshtein. One
interesting bit of data is that the original traces have much
lower error than both filtered and filtered/discretized when
using 0-1 loss, but only a little lower when using Jaccard or
Levenshtein loss.

Table 3 shows the average loss for all 4 trace types and all
3 loss functions, but evaluated using a leave-one-out pro-
cedure. Again, we observe that the Levenshtein distances
achieve the best results for the non-discretized traces, but
that once discretized, a propositional similarity achieves bet-
ter results. Surprisingly, discretizing the traces made the
Levenshtein distances perform worse in some scenarios. How-
ever, this does not seem to affect the propositional similarity.
Our hypothesis is that discretizing made some of the entries
in our dataset become too similar, specially when using a
Levenshtein similarity, where two predicates with the same
arguments but different head might have a higher similarity
than two predicates with the same head but different argu-
ments. Thus, it seems that given our world representation,
the weighted approach should be taken one step further,
and also increase the penalties for matching predicates with
different heads.

Additionally, it is interesting to note that, although the dis-
cretized traces have much higher error on the one-vs-one
tests, their error on the leave-one-out tests is equivalent to
or a little lower than the original traces. This is likely due
to the discretization increasing the amount of nearly iden-
tical world states, but the extra amount of training data
available in the leave-one-out tests allowing for better pre-
dictions, reversing the negative effects. It is also notable that
the traces which have been both filtered and discretized have
lower error than the original traces when using Jaccard or
Levenshtein loss with a leave-one-out testing scheme, due to



Original Filtered Discretized Filtered /Discretized

0-1 JL LL 0-1 JL LL 0-1 JL LL 0-1 JL LL
Random 0.841 0.823 0.823 | 0.973 0.919 0919 | 0.973 0.919 0.919 | 0.949 0.907 0.907
Most-likely 0.630 0.630 0.630 | 0.794 0.765 0.765 | 0.630 0.630 0.630 | 0.776 0.759  0.759
Jaccard 0.589 0.480 0.467 | 0.679 0.505 0.484 | 0.572 0.462 0.455 | 0.621 0.444 0.386
Levenshtein 0.619 0.508 0.496 | 0.661 0.480 0.395 | 0.560 0.476 0.425 | 0.600 0.429 0.374
W. Levenshtein | 0.558 0.438 0.389 | 0.661 0.480 0.395 | 0.560 0.458 0.425 | 0.600 0.429 0.374
Propositional 0.601 0476 0.424 | 0.671 0.472 0.382 | 0.555 0.441 0.414 | 0.587 0.398 0.350

Table 3: Average loss for various algorithms and loss functions, evaluated using a leave-one-out procedure

(lower is better). Results which are statistically significantly better than the rest are underlined.

1 4 5 6 7 8 9 10
1 |0.000 0.631 0.772 0.453 0.838 | 0.853 0.866 0.770 0.854 0.946
2 | 0.583 0.000 0.563 0.543 0.648 | 0.834 0.849 0.804 0.849 0.922
3 | 0.505 0.515 0.000 0.603 0.687 | 0.829 0.826 0.792 0.815 0.906
4 10672 0.500 0.489 0.000 0.676 | 0.816 0.874 0.801 0.817 0.898
5 | 0.651 0.478 0.518 0.480 0.003 | 0.890 0.854 0.805 0.855 0.975
6 |0677 0734 0.714 0.596 0.725 | 0.000 0.736 0.646 0.769 0.700
7 10625 0.638 0.560 0.563 0.617 | 0.535 0.028 0.705 0.641 0.645
8 |0.682 0.748 0.727 0.596 0.733 | 0.694 0.736 0.024 0.787 0.703
9 |0.59 0.598 0.602 0.531 0.667 | 0.633 0.612 0.644 0.001 0.637
10 | 0.714 0.743 0.728 0.682 0.746 | 0.642 0.673 0.671 0.834 0.029

Table 4:

the discretization allowing for better predictions.

Table 4 shows the individual results for using each trace
to predict every other trace (one-vs-one procedure), with
Jaccard similarity and 1-0 loss. This table has at least two
notable features. First, as can be seen by the top-left to
bottom-right diagonal, running a trace on itself does not
always result in correctly predicting the action entries, as
might be expected. This is because consecutive entries in
a trace might sometimes have an identical world state, but
have different actions.

Second, if the table is split into quadrants as shown, an
interesting phenomenon occurs, which is easiest to see with
the Jaccard results, but present in the other results as well.
As previously noted, this data was generated from 2 sets
of 5 similar traces. Considering the top left quadrant to
be quadrant one and labeling them clockwise, quadrant 1
shows traces from set 1 predicting other traces from set 1,
quadrant 2 shows traces from set 2 predicting traces from
set 1, quadrant 3 shows traces from set 2 predicting traces
from set 2, and quadrant 4 shows traces from set 1 predicting
traces from set 2. As can be derived visually from the table,
quadrant 2 has the lowest values, with an average value of
only 0.148. As can be predicted due to the traces being
from homogenous sets, quadrants 1 and 3 have much higher
values of 0.410 and 0.318, respectively (after removing the
values of running each trace on itself, for fairness). However,
quadrant 4 has an average value of 0.338, which means that
using traces from set 1 to predict traces from set 2 was more
effective than using the ones from set 2.

7. RELATED WORK

The problem of learning behavior from traces has received
significant attention in the literature. For example, Ross,
Godron, and Bagnell, study learning from demonstration in

0-1 loss for Jaccard similarity in a one-vs-one procedure (split into quadrants).

the context of the Super Tux Cart and Super Mario Bros
games [21]. However, they use an online learning approach,
where we focus on batch learning. Their system, called DAg-
ger, creates a policy iteratively, it uses the current policy to
gather more data, which is added into the dataset. The new
policy is then derived by attempting to mimic the expert
on the entire set, not just the new portion. For Super Tux
Cart, they were able to prevent the car from ever falling off
the track after 15 training iterations. It also averaged a dis-
tance of around 3000 on Super Mario Bros, where stages are
4200-4300 on average.

Other approaches to learning from demonstration include in-

verse reinforcement learning [2, 25], Dynamic Bayesian Net-

works (such as Hidden Markov Models) [8, 18], supervised

learning techniques [22] (including relational approaches [16]).
The reader is referred to [4] and [18], for recent surveys of

learning from demonstration.

Concerning the use of Case-Based Reasoning for LfD, the
Darmok system [17], combined learning from traces and a
case-based planning approach. Specifically, it learned plan
snippets from traces, and these snippets where then reused
to create a plan to play the real-time strategy game Wargus.
Darmok required humans to annotate the learning traces
with the goals they were pursuing, but was able to win
41% of its games after learning from just one learning trace.
Compared to the approach presented in this paper, Darmok
was designed for games requiring long-term planning instead
of reactive control, and thus would not be suitable for do-
mains such as Minecraft.

Floyd and Esfandiari [10] studied case based learning in
robot soccer, simulated space combat, and physical robots
with varying degrees of success. The robot soccer player
had decent prediction accuracy, but was difficult to visu-



ally distinguish from an actual player - similar results were
obtained for the space combat agent. Finally, with the al-
lowance of considering right and left turns identical, their
physical robot learning agents were able to achieve perfect
accuracy by choosing the correct action and executing it for
the correct duration. In their approach, Floyd and Esfan-
diari studied an approach based on representing the world
state as a feature vector, and also considered domains with
a fixed set of actions. In our domain, players can execute
more than one action at a time (e.g., walking, while turning
and attacking), making prediction more complex.

A different take on learning human-like behavior in com-
puter games comes from Bauckhage, Thurau, and Sagerer
[6]. Therein, they use neural networks to perform pattern
recognition and perform actions in hope of imitating hu-
man behavior. Their system was able to fairly successfully
emulate various human-like behaviors in Quake 2, such as
learning efficient paths (moving through a map in a deliber-
ate way to collect all items efficiently instead of arbitrarily
moving around the map). Their results show that learning
human-like behavior by training agents on data generated
by humans is indeed feasible. However, their work was ap-
plied primarily to reactive behaviors, whereas our focus is
on more complex behaviors that might require many steps.

Another related approach to learn behavior in games is to
use reinforcement learning. For example, Smith, Lee-Urban,
and Munoz-Avila [24] present an approach, called RETAL-
IATE, to learn behavior for first-person shooters. RETAL-
TATE was tested against 3 different opponent profiles: op-
portunistic, possessive, and greedy, with very different play
styles. Which agent was being fought against was changed
after each game instance, and RETALIATE was able to
adapt quickly and win 47 of the 50 games. They also ran
RETALIATE against HTNbots, which changed their strate-
gies dynamically within a single game, and it was able to
adapt and defeat this agent as well. Although it is very
good at adapting to dynamically changing circumstances,
they focus on learning to adapt to an opponent’s strategy,
which is different from the goal we pursue in this paper.

The reader is referred to [15] for a more general description
of open challenges in applying machine learning to games.

8. CONCLUSIONS

In this paper, we presented a case-based reasoning approach
to learning behavior from demonstration in Minecraft, focus-
ing on the evaluation of symbolic similarity measures and
relational representations of the world state. We detailed
the 4 similarity measures, 3 loss functions, and 4 trace types
that were employed in our study.

It is clear from observing the data that our CBR approach
using some of the distance measures performs much bet-
ter than the baseline of predicting a random action, or just
predicting the most common action, especially when using
the Jaccard and Levenshtein loss functions (which provide a
more fine-grained performance measure). However, perfor-
mance is still not good enough as for using this technique
for automatically learning behavior from demonstration.

In order to improve the performance of our approach, we

would like to improve the weight calculations for the weighted
Levenshtein similarity measure, and perform experiments
with further similarity measures. We are specially inter-
ested in exploring world representations that capture the
geometry of the world, which is key for determining behav-
ior, and is not captured in our current world representation.
Additionally, we would like to further improve our evalu-
ation methodology by letting the CBR system control the
character in the game, and actually act out the actions it
predicts, which would provide us a different method of eval-
uating our results. Additionally, adding the notion of having
a goal/subgoals to the traces may help to further reduce er-
rors (for example, the goal at the start might be to obtain
4 logs — once the traces show that the inventory contains at
least 4 logs, the goal is changed to making a crafting table).
Finally, some actions in the game take time to complete,
sometimes up to a few seconds, and some others only make
sense in the context of a specific sequence of actions. There-
fore, our methods may be able to be improved by including
a representation of how long an action was performed or of
previous actions in the world state representation (for ex-
ample incorporating temporal backtracking retrieval [9] into
our algorithm).
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