
Grammar-based Procedural Content Generation from
Designer-provided Difficulty Curves

Mircea Traichioiu
University of Amsterdam,

Intelligent Systems
Laboratory, Amsterdam, The

Netherlands
mircea.traichioiu@gmail.com

Sander Bakkes
University of Amsterdam,

Intelligent Systems
Laboratory, Amsterdam, The

Netherlands
s.c.j.bakkes@uva.nl

Diederik Roijers
University of Amsterdam,

Intelligent Systems
Laboratory, Amsterdam, The

Netherlands
d.m.roijers@uva.nl

ABSTRACT
In experience-driven procedural content generation (EDPCG)
[15], the challenge of (parts of) a level are often subject
to player-adaptive optimisation. However, this may inter-
fere with the design goals of the game designer with respect
to the difficulty build-up of the entire level, e.g., the de-
signer may have specific ideas about where the climax of
a level ought to be. This can be a reason for designers to
not adopt experience-driven procedural techniques. In this
paper we mitigate this, by meeting the designers half-way:
the designers provide a set of allowed difficulty curves for a
level, and decide where the AI is allowed to switch between
these, e.g., after each or certain segments or only between
levels. This way, the designer is in control of the tension
levels and ‘feel’ of the level, while still allowing player adap-
tivity. This paper describes how to generate level(s) (seg-
ments) using difficulty curves, and how this can be applied
to experience-driven procedural content generation. Exper-
iments that validate our approach in an actual, open-source
action-adventure game, reveal that it is consistently able
to generate entire game levels that closely approximate dis-
tinct difficulty curves. Also, the adopted generative gram-
mar approach ensures that the generated content will never
be unplayable, as it results strictly from (presumably ade-
quate) designer-provided grammars. Finally, the obtained
experimental results show that the procedural generation of
game levels consistently takes place in a reasonably com-
putationally efficient manner. Given these obtained results,
we conclude that our enhanced procedural approach pro-
vides an effective basis for generating game levels according
to designer specifications, yielding new options for PCG.

1. INTRODUCTION
In this paper we present an approach to procedural con-
tent generation (PCG) [12] from designer-provided difficulty
curves. The aim of the approach is to allow the game de-
signer to guide the PCG process by providing a set of allowed
difficulty curves for a level, and deciding where the AI is al-

lowed to switch between these, e.g., after each or certain
segments or only between levels. This way, the designer is
in control of the tension levels and ‘feel’ of the level, while
still allowing player adaptivity.

Our approach can be considered an instantiation of experi-
ence-driven procedural content generation (EDPCG) [15]
under a mixed-initiative design perspective [13, 10, 14]. In
this paper, we assume that game designers are able to pro-
vide a set of target difficulty curves of game levels, and a
method for matching the right difficulty curves to the right
player. As such, we employ a predefined difficulty curve
– which is used in the generative process at design time –
that can be updated while the game is being played in order
to (re)generate the remaining parts of the level. The ap-
proach is based on generative grammars; they originate in
linguistics, where they are used as a model to describe sets
of linguistic phrases [5].

2. APPROACH
In the present work, the game world is specified through two
distinct structures, the mission and the space (cf. Dormans
and Bakkes [8, 1]). The mission encodes the types and order
of the tasks which must be performed by the player in order
to advance though the level. Based on a generated mission
representation, the space describing the physical environ-
ment of the level is constructed. For both tasks, generative
grammars are employed.

The main contribution of our proposed enhancement is the
introduction of a target difficulty curve for guiding the gen-
eration process, allowing for a more precise control over the
anticipated player experience. We employ a simple evolu-
tionary method [9] (without cross-over) which mutates the
mission components of the level. A population of level can-
didates is generated and mutated iteratively for obtaining
improved solutions, i.e. solutions that closely follow the tar-
get difficulty curve.

The general structure of the approach is as follows. The
game designer provides (1) the (initial) target difficulty curve
of the level, (2) the general mission specification, (3) the
mission rule set, and (4) the space rule set. The four design
specifications are input into an evolutionary process that
outputs a final mission graph through the use of generative
grammars. The final mission graph is translated into the ac-
tual space of the level, in which the mission can be carried

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page.
Proceedings of the 10th International Conference on the Foundations of
Digital Games (FDG 2015), June 22-25, 2015, Pacific Grove, CA, USA.
ISBN 978-0-9913982-4-9. Copyright held by author(s).



out by the player.

Mission specification. The mission associated with a level
describes the tasks which must be performed by the player in
order to advance through the level. In an action-adventure
game, these tasks usually consist of overcoming a group of
enemies or solving a puzzle. Given this nature of the tasks,
a difficulty measure can be associated to them by the game
designer, reflecting e.g., the toughness of the enemies or the
intricacy of the puzzle. We encode such a mission specifica-
tion using a graph representation, in which vertices describe
tasks, while edges denote the order in which the tasks will
be encountered by the player.

To incorporate the difficulty-level associated with the tasks,
as well as to allow a meaningful relationship between the
mission and the space representation of the level, each node
has a symbol associated with it. These symbols are defined
by the game designer and represent the vocabulary onto
which the employed generative grammar operates. The sym-
bols can indicate either a terminal node or a non-terminal
node. The terminal symbols denote level sections for which
the space is ready to be generated and have a difficulty level
associated with them. Non-terminal symbols need to be
further expanded using generative mission rules, until the
mission graph will contain only terminal nodes.

The rules operating on the mission graph form a Probabilis-
tic Context Free Grammar [4]. As such, each rule has as-
sociated with it a left-hand-side non-terminal symbol and a
right-hand-side subgraph consisting of terminal and/or non-
terminal nodes. In order to ensure a proper transition from
the non-terminal nodes to their associated subgraphs, the
number of outbound edges of the left-hand-side non-terminal
must be equal to the number of outbound edges of the right-
hand-side subgraph. Additionally, each rule has an execu-
tion probability associated with it; it is a statistically neu-
tral probability, unless the game designer decides to include
a bias favouring specific rules. The sum of probabilities for
all the rules having the same left-hand-side symbol adds up
to 1.

Difficulty curve specification. A designer-flexible way to
define a desired player experience can be achieved by con-
structing a target difficulty curve. Here, the curve encodes
the anticipated difficulty encountered by the player as she
advances through the level. Thus, the difficulty curve can
be viewed as a function over time with values in a scalar
difficulty range defined by the game designer.

The computation of the expected difficulty curve of a gen-
erated mission, under the previously described mission rep-
resentation, is done by simulating a possible level traversal
by the player. While the actual level exploration varies from
player to player according to distinct player profiles, a rea-
sonable approximation may be described by a Depth-First-
Search (DFS) exploration of the mission graph. As such,
each step of the DFS algorithm increments a time counter,
where the difficulty associated with the current time reflects
the difficulty of the currently encountered node. Given the
discrete nature of time in this approach, the difficulty val-
ues of intermediate time points are obtained through linear
interpolation. Considering the varying length of the possi-

Algorithm 1: Mission generation with difficulty curves.

1 population = InitPopulation(mission specification);
2 sort(population, fitness);
3 prevBest = -1;
4 epochs = 0;
5 epochsSinceImprovment = 0;
6 while epochs < maxEpochs && epochsSinceImprovement <

maxImprovementEpochs && fitness(population[0]) >
fitnessThreshold do

7 for i = 1 : size(population) ∗ mutationPercentage do
8 idx = rand() modulo size(population);
9 mutate(population[idx]);

10 end
11 for i = size(population) : size(population) − (size(population)

∗ discardPercentage) do
12 population[i] = new Individual(mission specification);
13 end
14 sort(population, fitness);
15 epochs = epochs + 1;
16 if prevBest ! = fitness(population[0]) then
17 epochsSinceImprovement = 0;
18 prevBest = fitness(population[0]);

19 else
20 epochsSinceImprovement = epochsSinceImprovement + 1
21 end

22 end

ble generated levels, both the target and computed difficulty
curves are normalized to a fixed time interval.

Mission generation. In our approach, the actual genera-
tion of levels with respect to a target difficulty curve, and
given a provided mission specification, is performed with an
evolutionary method (Algorithm 1).

In the algorithm, an initial population is generated by ap-
plying the generative mission rules on the provided mission
specification (containing non-terminal symbols), and by sub-
sequently expanding all non-terminal nodes successively un-
til only terminal nodes are left (as in Dormans and Bakkes
[8, 1]). The population is subsequently improved through
an iterative process. At each iteration a number of indi-
viduals is mutated and a fraction of the worst individuals
(according to their fitness, explained later) is replaced by
newly generated ones. To preserve genome expressiveness,
no crossover is performed. This iterative procedure ends as
soon as one of the following designer conditions is met: a
maximum number of iterations has been performed, a good
enough candidate (according to its fitness) was generated,
or there has been no improvement in the fitness of the best
individual for a given number of steps.

The mutation operation consists of selecting one of the sub-
graphs generated by a non-terminal node of the initial mis-
sion specification and regenerating it by applying a different
sequence of rules (selected randomly according to their re-
spective probabilities) to the corresponding non-terminal.
For each individual, the node chosen for regeneration is the
one responsible for the section with the greatest cumulative
error between the resulting difficulty curve and the target
difficulty curves. Note that since this operation can gen-
erate a worse individual than the previous one (due to the
random nature of the application of rules), and since the it-
erative process can be stopped after a number of iterations,
an ‘any-time’ solution is desirable. Thus, if the best indi-
vidual in the population (according to its fitness) is chosen
for mutation, a copy is created and then mutated, replacing



the worst individual (to avoid an increase in the population
count). This way, the best individual obtained so far is not
lost. Should the mutated copy proves to be better, then
it will become the best individual of the population (i.e.,
elitism [7]).

The fitness of an individual is defined as the Root-Mean-
Squared (RMS) deviation between the target difficulty curve
and the difficulty curve of the individual. Thus, a lower value
indicates a better individual. Note that a perfect fitness
value usually cannot be attained during mission generation;
it may not be possible to perfectly match a target difficulty
curve, as this depends on how the mission specification and
the mission rules are defined.

Space generation. Once evolutionary mission generation
ends, the best candidate mission is determined and serves
as a base for the generation of the level’s space. For each
terminal node in the mission graph a subspace is generated
and then all subspaces are stitched together according to the
spatial relationship between the nodes.

As each subspace is generated individually, distinct (proce-
dural) methods may be employed for generating the actual
game space per nodes, and the process may be parallelized.
For our experiments, we will consider mission generation for
top-down 2.5D action-adventure games. A more detailed de-
scription of this procedure is beyond the scope of the present
paper; we kindly refer the reader to Dormans and Bakkes
[8, 1] for an extensive description of the space generation
process.

Player adaptation. The actual level generation process
can be performed during the game’s development process,
but also online, i.e., while the game is being played. The
latter ability provides a clear opportunity for personalis-
ing the procedurally generated mission to assessments on,
e.g., the player experience. Upon input on assessments of
the player’s experience, domain knowledge of the game de-
signer may define that the adopted difficulty curve should
be shifted upwards, downwards, or should be replaced by an
alternative curve altogether; all with the aim of providing
a more balanced game experience while the game is being
played.

Our approach enables online adaptation, with the limitation
that during play of the game, the game’s mission cannot be
regenerated from the start, as the user has already played
parts of the mission. The mission can, however, be straight-
forwardly segmented, with the next mission segment being
on-the-fly generated dependent on player assessments and
the resulting adjustments to the difficulty curve. In gaming
practice, such segmentation of the procedural process can be
achieved by adopting a game setup consisting of sequentially
executed levels, or implementing (virtual) checkpoints.

3. EXPERIMENTAL SETUP
We implemented the procedural method developed by Dor-
mans and Bakkes [8, 1] - and our subsequent enhancement -
in the open-source game engine Free Libre Action Role-
playing Engine (flare). The experiments concerned a
linear mission specification, and a flexible set of mission rules
(i.e., the mission rules potentially allow for highly distinct

Figure 1: Mission specification and mission rules employed in the
experiments. The ruleset involves the use of a non-terminal symbol
(N1) and 100 terminal symbols, used in 200 corresponding production
rules, from which only the first two pairs are depicted, using terminal
nodes T100 and T200.

missions to be generated). The linear level consisted of a
start and end node, connected by a chain of 10 identical
non-terminal nodes. The set of mission rules involved the
use of a single non-terminal symbol and 100 terminal sym-
bols with associated difficulties ranging from 1 to 100. For
each of these terminal symbols, two rules were generated,
one producing the terminal node and one producing the ter-
minal node connected to another non-terminal node. All of
the production rules have the same probabilities of being
chosen for expansion, although these probabilities can be
adjusted by the game designer to favour longer or shorter
generated levels. The mission specification and the afore-
mentioned rule set are illustrated in Figure 1. The employed
population size is 200, the mutation rate is 0.9, the discard
rate is 0.1, and the maximum iteration count of 1000.

Four relatively complex target difficulty curves were exper-
imented with: one based on a Gaussian distribution, one
based on a sigmoid function, and two linear combinations,
one involving an inverse and a sinusoidal function and an-
other involving two sinusoidal functions. While we acknowl-
edge that the selection of these difficulty curves was some-
what arbitrary, we presume that the expressiveness of dif-
ficulty over time as provided by the curves, is such that
the experiments may indeed provide insight as to the per-
formance of the proposed method in real-life game design
scenarios.

The general form of the utilised fitness function is given
in Equation 1. Two distinct variations of the function were
tested. The first variation is based on the Root-Mean-Squared
(RMS) difference between the candidate curve and the tar-
get curve (Equation 2). We refer to this first function as
the RMS-based fitness function. The second variation im-
plements an additional penalty in the score measure that is
based on matching the sign of the curve’s gradient (Equa-
tion 3). We refer to this second function as the smoothing
fitness function.

(1)fitness =

√∑
N
i=1 scorei∑

N
i=1 t2

i

(2)scorei = (ti − ci)
2
, i = 1..N

(3)scorei = (ti − ci)
2 ·
(

1

+
∣∣∣ sgn(ti−1 − ti) − sgn(ci−1 − ci)

2

∣∣∣), i = 1..N



Table 1: Absolute error of generated solutions

Shape of Difficulty Curve RMS-based func. Smoothing func.

Gaussian 0.058686 0.072151
Sigmoid 0.043948 0.038735

Inverse - Sinusoidal 0.082256 0.097005
Sinusoidal - Sinusoidal 0.060651 0.053975

In the equations above, N represents the (normalized) length
of the curve, ti denotes the value of the target curve at time
i and ci denotes the value of the candidate curve at time
i. This variation favours individuals whose difficulty curve
not only matches the desired difficulty, but also the general
shape of the target curve. This behaviour may be considered
more desirable with respect to the player experience.

4. RESULTS
The results of adopting the RMS-based fitness function are
given in Figures 2 (other figures omitted due to space lim-
itations). We observe that in all cases, the curve of the
generated mission closely follows the desired target curve.
This is also expressed in terms of the absolute error of the
final, generated solution, as given in Table 1. The results
of adopting the smoothing fitness function are given in Fig-
ures 3 (other figures omitted due to space limitations). We
observe that also in this setup, the curve of the generated
mission closely follows the desired target curve. As expected,
the smoothing fitness function provides an approximation
with a more smooth general profile. As indicated by Table 1,
the obtained absolute error when employing the smoothing
fitness function does not differ substantially from the error
obtained with the RMS-based fitness function. Given that
the performance obtained with the smoothing fitness func-
tion and the RMS-based fitness function are comparable in
terms of absolute error, one may surmise that game develop-
ers may opt for such a smoothing function, as it provides a
less coarse profile in the actual difficulty curve. We observe
that in every scenario, the generative approach appears to
have converged to the best fitting solution within 1000 it-
erations. On standard computing hardware, i.e., an Intel
Core i7-2675QM @ 2.2GHz, one iteration takes on average
28 milliseconds. This implies that on average our algorithm
requires no more than 28 seconds for (re)generating a new
mission. In several scenarios, the generative approach con-
verged substantially faster; on average after approximately
575 iterations (i.e., approximately 16 seconds). Here, we
note that the reported efficiency concerns the generation of
an entire playable level. While it is undesirable to let game
players wait for a next level for more than a few seconds, in-
deed, the generation process may be parallelised with actual
gameplay, and can be constrained to (re)generate specific
nodes or short segments. Under these caveats, we consider
the developed method reasonably computationally efficient
and lightweight for implementation in practise.

5. CONCLUSIONS AND FUTURE WORK
We enhanced an existing approach for generating game lev-
els with generative grammars. We defined three criteria
for the enhanced approach, namely (1) it should be do-
main independent, (2) reasonably computationally efficient,
and (3) procedurally generate content that strictly conforms
to designer specifications with respect to a desired diffi-
culty curve. Experiments that validated the enhanced ap-
proach in an actual, open-source action-adventure game, re-
vealed that the approach is consistently able to generate

Figure 2: Obtained difficulty curves in the initial and
final generation using a Gaussian-based target diffi-
culty curve, with the RMS-based fitness function.

Figure 3: Obtained difficulty curves in the initial and
final generation using a Gaussian-based target diffi-
culty curve, with the smoothing fitness function.

entire game levels that closely approximate distinct diffi-
culty curves. Also, the adopted generative grammar ap-
proach ensured that the generated content will never be un-
playable, as it results strictly from (presumably adequate)
designer-provided grammars. Finally, the obtained exper-
imental results showed that the procedural generation of
game levels consistently takes place in a reasonably com-
putationally efficient manner. Given these obtained results,
we concluded that our enhanced, domain-independent pro-
cedural approach provides an effective basis for generating
game levels according to designer specifications.

For future work, we will investigate how multi-dimensional
difficulty curves may be adopted, and how automatically
generated player profiles may be incorporated in the grammar-
based approach to procedural level generation. Taking into
account additional characteristics of player behaviour such
as non-deterministic action choice or past experience of the
level would enable more expressive player models for eval-
uating perceived difficulty. Furthermore, we could reformu-
late the level generation problem with multiple objectives [6,
11], i.e., minimising the deviation from the target difficulty
curves while maximising the appropriateness of challenge
level to the individual player (either via implicit feedback
[2] or emotion recognition [3]), thereby making the available
trade-offs between the two explicit.

Further experimentation will also assess the performance in
domains other than action-adventure games and the compu-
tational efficiency for more complex scenarios. Finally, find-
ing a method for assisting designers in devising expressive
enough grammars would also constitute a promising direc-
tion for future research.



6. REFERENCES
[1] S. C. J. Bakkes and J. Dormans. Involving player

experience in dynamically generated missions and
game spaces. In Eleventh International Conference on
Intelligent Games and Simulation (Game-On’2010),
pages 72–79, 2010.

[2] S. C. J. Bakkes, S. A. Whiteson, G. Li, G. Visniuc,
E. Charitos, N. Heijne, and A. Swellengrebel.
Challenge balancing for personalised game spaces. In
Proceedings of the 6th IEEE Consumer Electronics
Society Games, Entertainment, Media Conference
(IEEE-GEM 2014), 2014.

[3] P. M. Blom, S. C. J. Bakkes, C. T. Tan, S. Whiteson,
D. M. Roijers, R. Valenti, and T. Gevers. Towards
personalised gaming via facial expression recognition.
In Proceedings of Tenth AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment
(AIIDE’14), AAAI Press (Palo, 2014), 2014.

[4] E. Charniak. Statistical parsing with a context-free
grammar and word statistics. AAAI/IAAI,
2005:598–603, 1997.

[5] N. Chomsky. Language and Mind (extended edition),
1972.

[6] C. C. Coello, G. B. Lamont, and D. A.
Van Veldhuizen. Evolutionary algorithms for solving
multi-objective problems. Springer Science & Business
Media, 2007.

[7] K. Deb. Multi-objective optimization using
evolutionary algorithms, volume 16. John Wiley &
Sons, 2001.

[8] J. Dormans and S. C. J. Bakkes. Generating missions
and spaces for adaptable play experiences. IEEE
TCIAIG, 3(3):216–228, 2011.

[9] E. D. Goodman. Introduction to genetic algorithms.
In Proceedings of the 2014 conference companion on
Genetic and evolutionary computation companion,
pages 205–226. ACM, 2014.

[10] A. Liapis, G. Yannakakis, and J. Togelius. Sentient
sketchbook: Computer-aided game level authoring. In
Proceedings of ACM Conference on Foundations of
Digital Games, 2013.

[11] D. M. Roijers, P. Vamplew, S. Whiteson, and
R. Dazeley. A survey of multi-objective sequential
decision-making. Journal of Artificial Intelligence
Research, 48:67–113, 2013.

[12] N. Shaker, J. Togelius, and M. J. Nelson. Procedural
Content Generation in Games: A Textbook and an
Overview of Current Research. Springer, 2015.

[13] G. Smith, J. Whitehead, and M. Mateas. Tanagra: A
mixed-initiative level design tool. In FDG, pages
209–216, 2010.

[14] G. N. Yannakakis, A. Liapis, and C. Alexopoulos.
Mixed-initiative co-creativity. In Proceedings of the
ACM Conference on Foundations of Digital Games,
2014.

[15] G. N. Yannakakis and J. Togelius. Experience-driven
procedural content generation. IEEE Tr. Aff. Comp.,
2(3):147–161, 2011.


