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ABSTRACT

The majority of Procedural Content Generation (PCG) re-
search has made use of human authored rules, heuristics
and evaluation metrics. Machine learning techniques have
gone relatively unused in PCG. We introduce a data-driven
level generation approach, and apply it to the of dungeons
for Zelda-like Action Roleplaying Games (ARPGs). We use
Bayesian Networks (BNs) to learn distributional informa-
tion about level topology. The learned networks can then
be sampled to generate levels that have the same statistical
properties as human authored levels.
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1. INTRODUCTION

Procedural Content Generation (PCG) is the algorithmic
creation of new artifacts encompassing a wide set of tech-
niques. Despite decades of craft practice, PCG research is
a nascent field. Generating levels for video games has been
one of the most active areas of PCG research. Levels provide
the primary space for players to interact with the game, and
the design of levels is interconnected with the atomic content
of the game as well as the underlying mechanics.

Machine learning in the context of PCG has only just begun
to be explored in the last few years. Most PCG techniques
have been based off of a designer encoding some system of
rules or evaluation functions that determine the fitness of
a generated level. Learning directly from levels allows a
designer to generate new levels without needing to formalize
their design decisions. Instead they need only find, or create,
representative levels and allow the machine to learn the how
to design levels.

Action Role Playing Games (ARPGs), with Legend of Zelda
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being the exemplar, present an interesting challenge for PCG.
The machine learned PCG techniques above have only been
applied to platformers that progress from left to right. In
ARPGs the levels have complex topology that the player
must explore. For the sake of this paper we will discuss the
levels at three levels of abstraction. The highest is the mis-
sion space of the level. This is composed of the tasks the
player must accomplish to complete the level, e.g., collect-
ing a key to open a door. At the lowest level of abstraction
there is the physical space of the level. Typically, ARPG
levels are composed of a number of discrete rooms connected
by doors and this is the finest level of granularity that most
research has focused on [11] [7] [12] [19], although there have
been a few approaches that have looked at the placement of
atomic game components [9] [18]. The player space binds
the mission space and physical space. While completing the
mission space, the player explores the physical space of the
level. Often, the player must backtrack through previously
explored areas of the physical space. It is the path that
players take that makes up the player space of the level.

There are many machine learning techniques that might be
applied to learning levels. Previous work has used Markov
chain generation [6] and non-negative matrix factorization
[16]. However, it is not enough to learn from existing levels.
We want a machine learning technique that is parameter-
izable over common design decisions (length of level, diffi-
culty, ete.), that allows for artifacts to be randomly sampled,
and that can provide interpretable feedback to a designer.
Bayesian Networks (BNs) provide such a technique.

BNs are directed acyclic graphs that represent relationships
of conditional probability distributions. By encoding high
level design decisions as Random Variables (RVs) in the BN,
it can learn how something like level size impacts the design
of the level. A designer can then set a specific value, or
observe it in probability parlance, and then sample the rest
of the network to generate a level. A designer can sample
it repeatedly to generate levels that are different but similar
in a probabilistic sense. Finally, because each node in a BN
is an RV, it can tell us how likely any given facet of a level
is, providing feedback to a designer on elements that might
be out of place, due to their extreme unlikeliness.

Our contribution is a probabilistic data-driven approach to
level generation that allows for authorial control. We learn
a probabilistic BN model of level topology (how different
types of rooms are connected together) that captures the



distributional information in hand-authored example levels.
This model can then be sampled to generate a new dungeon
topology.

2. RELATED WORK

Level generation using machine learning techniques is mostly
an unexplored area. Roberts et al. [15] used discrimina-
tive machine learning to learn player models which in turn
were used as a recommender system to evaluate new levels.
Dahlskog et al. [6] used Markov chains to generate Mario
style platformer levels from n-grams learned from the Super
Mario Bros. 1 corpus. This technique allows for the gen-
eration of new levels, but only provides authorial control in
determining the types of levels generated by means of corpus
choice (e.g., to generate only ”underground levels” the au-
thor would have to make sure to train on only "underground
levels”). Shaker and Abou-Zleikha [16] used non-negative
matrix factorization to learn from the output of other level
generators. They were then able to produce levels that had
similar characteristics to the existing levels and also used
their generator to generate levels in "unbounded” parame-
ter space. However, the only control afforded to authors is
the ability to interpolate between known existing levels or
to explore the parameters space randomly.

However, there has been research into the application of
probabilistic, generative machine learning techniques to prob-
lems in the field of residential floor plans [13]. Architectural
design of residential floor plans is analogous to the design of
ARPG levels, as both are segmented into rooms connected
by doors that have specific purposes, and the design must
consider both the physical and player (or occupant) space.
Machine learning has also been used in other areas of pro-
cedural content generation, perhaps most impressively with
the use of convolutional neural networks to learn images of
chairs that then allows for interpolation between different
types and orientations of chairs [8].

3. DATA

There are many possible probabilistic data-driven machine
learning approaches that could be used in the context of
ARPG level design. We could extend the work of Roberts
et al. [15] and learn player models that could then be used
to evaluate generated levels, but these learned player models
are black boxes that do little to further our understanding
of level design. We could train a system to classify levels,
but this has the problem of only learning how to label lev-
els. What is desired is a system that will allow a designer
to specify high-level design considerations such as level size,
desired difficulty, or general layout and then can generate
new levels that fit these constraints while being probabilis-
tically likely. A BN fulfills all of these criteria as a designer
can observe a value for a distribution and the unobserved
posterior distributions of the other nodes will update.

To train the BN we have annotated existing ARPG levels to
be able to extract the relevant features needed. To do this,
we have used level images from three different ARPGs from
the Legend of Zelda series (Fig. 1). The Legend of Zelda
is the progenitor of the genre as well as the genre’s most
popular series, and, furthermore, is the most prolific series
of ARPGs with 17 titles over the course of 28 years. We
have used the levels from The Legend of Zelda, The Legend

Level 1 - Eagle

Figure 1: Annotations for the first level from The Legend
of Zelda. Green Circle with Plus is the start point. Light
Blue Upwards Triangle is the end point. Pink nodes (Di-
amond, Downwards Triangle, and Circle with X) contain
enemies. Downward Triangle nodes contain keys. Diamond
nodes contain items. Purple Pentagon nodes contain puz-
zles. The Red Diamond with horizontal line node contains
the boss. The Yellow Diamond off the map shows that it
warps to another room

of Zelda: Link to the Past, and The Legend of Zelda: Link’s
Awakening. We manually annotated 38 levels from the three
games and held out 4 levels for our test set. The held out set
contained one level from The Legend of Zelda: Link to the
Past and The Legend of Zelda: Link’s Awakening each, and
two levels from The Legend of Zelda. The 34 levels that the
model was trained on were composed of 1031 rooms in to-
tal, which was the final size of our training set. To annotate
these levels, we first have to acquire them in a format that
can be annotated. Fans of the series have posted images of
the levels that show the physical structure of the levels as
well as the placement of enemies, items, puzzles, and traps,
allowing us to see the full structure of the levels [1, 2, 3, 4].
‘We then annotate the images to turn them into the graph
topology that makes up the physical space of the level, where
each room is represented as a node in the graph. Nodes
(rooms) are annotated by what types of objects it contains:
Start, Enemies, Puzzles, Beneficial Items, Keys, Big Key,
Key Item, Boss Enemy, End. A room can contain any num-
ber of these elements, although in practice only contain up to
4 of these types of objects. The connections between rooms
are annotated with one of the following directed link types:
Door, Bombable Wall, Locked Door, Soft-Locked Door, Big
Key Locked Door, Key Item Locked Door, One Way Door,
Can See The Other Room. The Can See The Other Room
feature is obviously not a standard door but encapsulates an
important concept in ARPGs, mainly that the player is of-
ten made aware of where they need to go by getting glimpses
of another room, but there is no passable edge between their
current room and that room.

After annotating the levels, we then need to extract the
relevant features as the raw graph structure of the level does
not provide the proper level of abstraction, as well as the



fact that raw structure only considers the physical space of
the mission. To do the feature extraction we parse the level
graph and then extract the player space of the level. To do
this, we calculate an optimal path through the level from
which we can then calculate the relevant features that we
need to understand the physical, player, and mission spaces
of the level.

3.1 Graphical Model

Once the features have been extracted, we need to construct
the BN that best captures the dependencies. To do this
we must first determine the underlying distributions for the
features.

The categorical features, i.e. room type and door type fea-
tures, are considered in a bag of words style and have a
Dirichlet prior distribution. Given that a room in Zelda
can be any combination of the aforementioned types, e.g., a
room could contain a puzzle, enemies, and treasure, we need
to consider these features together. Numerical types of fea-
tures, such as number of rooms in the level and the length
of the optimal path through the level, are treated as Gaus-
sian distributions. If a node has categorical parent nodes,
a table of posteriors is learned, one for each combination of
parent category values. If a node has Numerical parents,
then a regression is learned, either a Gaussian or SoftMax
regression if the child is Numerical or Categorical, respec-
tively. Depending on the combinations of parent and child
distribution types there are a number of different possible
posteriors that can be learned as shown in Table 1.

In total, we considered 63 different features 33 of which were
global level and 30 of which were local. The global level
features have considerations that deal with the entirety of a
level. Some of these global features are of the physical space
such as the number of rooms in a level or the proportions
of room types within a level. Some are of the mission space
such as whether the dungeon contains a special item or boss
key. Finally, some are of the player space such as the length
of the optimal path, and the number of times the player
must backtrack to complete the level. The local features
are on a per-room basis and consider features such as the
room type, the neighbors of the room, whether it lies, and
the types of connections to its neighbors. As a side note,
due to the fact that distributions are learned for all possible
combinations of parent categories, we limit the number of
categorical parents to 2. This reduces the combinatorial
explosion caused by considering multiple categorical parents
and lessens the burden on our limited dataset.

Child Distribution
Parents Categorical (C) Numerical (N)
P(C) P(N)
No Parent Dirichlet Gaussian
; P(CICL, C2)) P(CICy, .., Cy))
Categorical Dirichlet Table Gaussian Table
. P(C[N1, ..., Ny)) P(N|N1,.,N;))
Numerical SoftMax Linear Regression
Mixed P(C|N1,..,N;,C1,C2)) | P(N[N1,..,N;,C1,C2))
SoftMax Table Linear Regression Table

Table 1: Modeled Distributions for Parent-Child Combina-
tions

With these building blocks we constructed five graphical
models. Three represent our best guess at the important
features and the relationships between them, while two are
only considered for baseline purposes.

e Full - Has 63 nodes and 97 edges. Contains all of the
considered features and represents our inductive bias
as to how best combine the features.

e Naive Bayes - Has 63 nodes and 62 edges. Number of
rooms is the variable that all distributions are condi-
tioned on. Considered only as a baseline.

e Random - Has 63 nodes and 100 edges. The edges are
assigned at random. Considered only as a baseline.

e Sparse - Has 40 nodes and 69 edges. The nodes and
edges are a strict subset of the Full model and removes
some of the nodes that are of secondary importance,
e.g., only considers the number of neighbors that con-
tain enemies or puzzles, but not the number that con-
tain items.

e Faxtreme Sparse - Has 13 nodes and 29 edges. The
nodes and edges are a strict subset of the Sparse model.
It contains none of the nodes of secondary importance.

We included the Naive Bayes model to examine whether
the data did indeed have conditional dependencies. The
Random is included to verify that our intuitions about the
structure were meaningful and that a random guess would
not perform similarly.
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Figure 2: The Extreme Sparse Model

The smallest model, Eztreme Sparse, can be seen in Figure
2. Due to the fact the Bayesian Information Criterion (BIC)
penalizes model complexity we wanted to have a range of
models covering various levels of complexity to determine
what the best compromise between simplicity and covering
the desired features. Table 2 reports the BIC scores for our
various network topologies after training.

We used the Infer.NET probabilistic programming frame-
work from Microsoft Research [14] which uses the Varia-
tional Message Passing (VMP) protocol to infer the underly-
ing distributions given a graphical model and observed data.
To train the network we set up the relationships between
nodes, set the observed data, and then infer the posterior
distributions.



4. MODEL VALIDATION

To evaluate our models, we used a modified version of the
BIC introduced in [10] to obtain a single number represent-
ing the log-likelihood of the training data given our model
with a regularization term to penalize model complexity as
seen in the formula.

log p(D|S™) ~ log p(D|fs, S") — 4 log N

A perfectly likely model would have a log-likelihood of 0, i.e.
a probability of 1. If there were multiple such models, the
simplest one, i.e. the one with the smallest regularization
penalty, would be chosen. More commonly, there is a trade
off between a model that better explains the data, i.e. is
more likely, but that is more complex, i.e. has a higher
regularization term. The less likely a model is, the lower the
log-likelihood will be, so a BIC closer to 0 is better than one
that is more negative.

Learning Method BIC
Full —1.656¢"
Naive Bayes —3.224¢°
Random —1.781e'!
Sparse —1.618¢"
Ezxtreme Sparse —1.5817

Table 2: BIC scores for the different network topologies

As expected the Random model performs the worst, per-
forming orders of magnitude worse than any of the struc-
tured models. The Naive Bayes model is an order of mag-
nitude worse than any of other structured models, which
would indicate that the features do indeed have some con-
ditional dependence. The Full model performs at a rate
slightly worse than the Sparse or Extreme Sparse models,
but the differences between the three are negligible.

To test the predictive power of our learned model against the
training data and the Sum of the Square Error (SSE) and
the Average Error per level can be seen in Table 3. We used
the training data, but removed Number of Rooms in Level
which was then inferred. As you can see, the Naive approach
does demonstrably worse than the graphical approaches. As
might be expected from the similarity of the BIC values,
the Full, Sparse, and Extreme Sparse preform similarly. For
the purposes of prediction, the Extreme Sparse preforms the
best.

Learning Method SSE | Avg. Error
Full 284.8 2.89
Naive Bayes 2037.8 7.74
Sparse 258.3 2.76
FExtreme Sparse 255.4 2.74

Table 3: SSE of Inferred Room Count from Training Data

Looking at the held out test set in Table 4 we see that our
networks do not perform as well as they did on the train-
ing data. Performing paired t-tests between the different
models, we see that except for Sparse vs Full each model
performs differently at a statistically significant (p < 0.01)
level. Our randomly held out test data were atypical and
as such speak to the difficulty of learning on such a small

amount of varied data. The level chosen from Link to the
Past happened to be the largest level considered and as such
was very much an outlier compared to the rest of our data.
If it were ignored the average errors decrease to be much
closer to the training results.

Learning Method | SSE | Avg. Error | SSE* Avg.
Error*
Full 163.9 6.40 | 34.9 3.41
Naive Bayes 581.3 12.06 | 224.5 8.65
Sparse 160.1 6.3 | 33.3 3.33
Extreme Sparse 157.0 6.24 | 35.0 3.42

Table 4: SSE of Inferred Room Count from Test Data
* the outlier has been removed.

S. CONCLUSION AND FUTURE WORK

In this paper we have presented a method for automatic
learning of design decisions from human authored levels. We
then showed that the trained networks could be used as a
form of classifier based on the learned relationships. While
we as designers had to insert our biases about the variables
that would be interesting/valuable, we did not need to deci-
pher and then encode any design decisions ourselves. That
being said, we did hand produce the BN topologies. In fu-
ture work, we would like to apply network learning tech-
niques so that even the relationship between variables was
machine learned.

Not shown in this paper is how the trained networks could
be used for the generation of new artifacts. We have already
started generating levels using the networks learned from our
training set. Currently, this works by a designer specifying
high level constraints, such as number of rooms, and then
the system samples until it has a complete, valid level. In
future work, we would like to generate these levels using a
Reversible-Jump Markov Chain Monte Carlo system. By
sampling over the space of generated levels using a Monte
Carlo process we can generate levels that match our desired
distribution, i.e. the levels that we learned from in the first
place.

Our existing work only considered level topology, but the
same principles can be applied at finer granularity. Specifi-
cally, we could learn design decicions for tile placement. On
that note, there are many games for which level topology
is an uninformative space and would need to be modeled at
tile-placement granularity. It is our hope to extend our work
to this level.

Another possible path for this would be a mixed initiative
tool, in line with the work of Butler, et. al [5] or Smith,
et. al [17]. Just as decorative elements are important to
later Zelda games, most later Zelda games have “showpiece”
rooms that are especially elaborate and have very specific
theming. We could imagine an authoring tool that would
allow for a designer to specify high level desires about the
dungeon that could incorporate generated “filler” rooms that
work well with the human authored “showpiece” rooms. A
mixed initiative tool based on probabilistic principals could
help guide a designer by highlighting unlikely sections of the
level that might be problematic.
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