
Tracery: An Author-Focused Generative Text Tool

Kate Compton Michael Mateas
Expressive Intelligence Studio

Department of Computer Science University of California, Santa Cruz
1156 High St, MS:SOE3 Santa Cruz, CA 95064 USA

kcompton, michaelm @soe.ucsc.edu

ABSTRACT
Tracery is an author-focused generative text tool, intended
to be used by both novice and expert authors, and designed
to support generative text creation in these growing commu-
nities, and future ones. Tracery is designed to work easily
in a variety of possible applications by a variety of new au-
thors, so we present a range of existing projects that use
Tracery as part of the art creation process.

1. INTRODUCTION
New communities of generative text practitioners are flour-

ishing, with expressive mediums like Twitterbots and Twine
joining existing practices of Interactive Fiction. Story gram-
mars have been used by the academic [3] and developer [2]
communities. We build on this existing history to create a
tool that servers the needs of many kinds of authors. aca-
demic, game developer, botmaker, and casual. Features like
data portability and ease of use are important to authors,
so Tracery’s scalable complexity allows for a low barrier of
entry and a simple JSON file format supports a culture of
sharing and remixing. So far the experiment seems to be
succeeding, we are able to easily author our own work, and
Tracery is being adopted by new authors as well.

2. ABOUT TRACERY
Tracery is a very small (16k) library for expanding a story

grammar written in Tracery syntax into fully-generated text.
In addition to this core library, we have built (and are

building more) authoring GUIs, grammar visualizations, and
statistical analysis tools. The authoring GUIs help the au-
thors create new Tracery grammars. The visualizers and
analyzers take a Tracery grammar as input, and visualize
information about how connected a grammar is, how deeply
nested or reusable its symbols are, and what the potential
space of its expanded outputs will be.

Another module is in-development to connect Tracery’s
text generation seamlessly to a modeled story world in a
game. This allows dynamic information in the game (hero

name, location, weather, current inventory) to automatically
populate and update a Tracery grammar, which can then be
used to generate appropriate flavor text and descriptions in
game. This module is being developed simultaneously with
an interactive game Neverbar so that it is informed by the
actual development needs of a game.

Tracery, as a whole project, is an ecosystem of interop-
erable modules, all sharing the Tracery grammar objects as
their ‘lingua franca’ data type. New components, tools, and
visualizations can be added to the ecosystem by new devel-
opers as Tracery grows in use.

3. DEMOS
Our demo session highlights several works that use Trac-

ery. Each work has generative text as a component (using
Tracery), but each work also uses it in a different way.

3.1 Eternal Night Vale

Figure 2: Generating indie music descriptions and
sinister warnings in Eternal Night Vale

Eternal Night Vale was the first released stand-alone project
using Tracery, and was created for ProcJam 2014, the pro-
cedural generation jam. It created possible episodes in the
style of the highly-stylized podcast Welcome To Night Vale.
A review in Rock Paper Shotgun praised the work as ”a great
little tool which condenses the tone and main elements of the
show into just a few paragraph”. By mimicking the struc-
tural hallmarks of Night Vale, and the unusual language of
the show, and providing a graphical style that reflected the
show’s tone, we were able to accurately capture the spirit of
the show in just a short grammar.

3.2 Interruption Junction

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page.
Proceedings of the 10th International Conference on the Foundations of
Digital Games (FDG 2015), June 22-25, 2015, Pacific Grove, CA, USA.
ISBN 978-0-9913982-4-9. Copyright held by author(s).



Figure 1: Tracery’s new interactive tutorial at www.crystalcodepalace.com

Eternal Night Vale shows that Tracery can be used to
create interesting valuable works, with no Javascript other
than a way to write the text to the screen, but it can also
be used a component of a larger game. Deirdra “Squinky”
Kiai’s ”Interruption Junction” is the first major game re-
leased using Tracery. In their words, it is“a short one-button
conversation game about being lonely in a group of people!”
The player is a person in a conversation in which three other
friends are discussing the activities of mutual acquaintances.
The player can mash the space bar to interrupt and begin
rambling about video games, but unilaterally dominating or
retreating from the conversation will cause people to fade
from the conversation. All of the dialogue is generated by
Tracery, using a grammar by Kiai. This generative dialogue
is meaningless and absurd and endless, in this case, a good
fit for the theme of the game.

3.3 Beautiful Stranger
Beautiful Stranger is an interactive digital ‘magic mirror’.

As the user stands in front of it, a face-tracking algorithm
can detect their face, procedurally overlaying their face with
an emergent and artistic ’mask’. As this transformation
occurs, the system begins surrounding them with a swarm
of surreal over-the-top compliments. Though the focus of
this project is on the generative art in the mask, Tracery
allowed us to quickly create a compliment generator.

3.4 Neverbar
Neverbar is an interactive sci-fi romance story, in which

the protagonist is at a time-traveling bar, and can romance a
number of surreal possible love interests. The story needs to
maintain consistent world state to know the gender of the
protagonist, their name, their current location in the bar,
their drink, how much of their drink remains, and other
such story items. Neverbar is a case study, developed simul-
taneously with Tracery’s state-maintenance module, to keep
the module informed by real game development needs.

3.5 Adapting MEXICA
Since Tracery does not have its own model of story con-

tinuity, or the lagic to maintain it, it can be paired with a
system that does to create generative text for a story with
real narrative coherence. We test how this collaboration
might work using a data structure output from MEXICA, a
computational plot generator.

3.6 Cheap Bots, Done Quick

Figure 3: Neverbar generates and presents many
options to the player, but must maintain world state
to remember player choices.

We will also be showing selections from authors using
George Buckenham’s tool “Cheap Bots, Done Quick” [?], an
online Twitterbot creation an hosting tool that was made
possible by Tracery.

4. PROJECT STATUS
We began this project with the hypothesis that, if we take

the real design needs of creators seriously, and created a us-
able system that addressed those needs, then creators would
choose to use it in their work. ”Usability” is informed by long
experience in both software development and indie game de-
velopment, and understanding the needs of these communi-
ties. Modularity, reliability, modifiability, portability are not
just boxes to check, they are critical determiners of whether
a system is adopted and used.

Several artworks and games have already been created us-
ing Tracery, by ourselves and our collaborators. Students are
using it in their academic projects and independent games.
George Buckenham’s CheapBotsDoneQuick is introducing
many novice users to bot-making. We hope to see further
adoption continue in the academic community as well.

5. REFERENCES
[1] K. Compton, B. Filstrup, M. Mateas, et al. Tracery:

Approachable story grammar authoring for casual
users. In Seventh Intelligent Narrative Technologies
Workshop, 2014.

[2] Orteil. Randomgen.
http://orteil.dashnet.org/randomgen/.

[3] D. E. Rumelhart. On evaluating story grammars*.
Cognitive Science, 4(3):313–316, 1980.


