
Spooky Dodgeball at a Distance

Devin Wilson Albith Delgado
devinwilson@gatech.edu albith@gatech.edu

Digital Media Program
Georgia Institute of Technology

Atlanta, Georgia, USA

ABSTRACT
Spooky Dodgeball at a Distance (or SDAAD for short) is a local
multi player electronic game of virtual dodgeball without
graphics. Two Players use a Neurosky MindWave headset, a low-
cost EEG biosensor, and a PlayStation Move controller to defend
and attack in a virtual game of dodgeball. The project is an
exploration of the gameplay possibilities that these two different
devices could offer when used together. We’re sharing 1) the
setup and configuration guidelines, 2) a record of our iterative
design process, 3) feedback from our testing sessions, and 4) the
insights derived from these activities as design research.

1. INTRODUCTION
To set up the game, players need the following hardware devices:
two Neurosky MindWave Mobile headsets, two PlayStation Move
Controllers, and two Macintosh computers with Bluetooth
functionality [1]. To run the game’s source code, players must
download the Processing Development Environment and a set of
libraries to interface with the Neurosky and PlayStation Move
devices [2]. Networking is handled with oscP5, an Open Sound
Control implementation for Processing [4]. With the PS Move
API, the PlayStation Move Controllers can be accessed and paired
to the computers via Bluetooth [3]. One computer functions as a
client and a server to the other computer’s client.

2. HOW TO PLAY
2.1 Goal
In the game, players take turns throwing a virtual ball to their
opponent. Successful throws break down the opponent’s defense,
leaving them vulnerable to the next attack by their opponent. The
ultimate goal of the game is to hit your unshielded opponent with
the virtual ball. Feedback in the game comes from audio cues
from the server computer, visual feedback via the controllers’
LEDs, and vibration from the PlayStation Move Controller.

2.2 Before the match
Before the match begins, players first put on their headsets, ready
their devices and perform a face-off to determine who begins the
game with possession of the ball. The players wait a randomly
generated amount of time for their LED’s light to turn white. The
first person to press the controller’s “Move” button after this
obtains possession of the ball. Press the Move button too early or
too late, and possession is given to the opposing player.

2.3 During the match
Ball possession is indicated by the player’s LED shining blue
during the match. A red LED indicates that the player does not

have the ball. Players can perform several actions in the game:
they can focus to raise their “attention” level, relax to raise their
“meditation” level, or throw the virtual ball. The MindWave
Mobile device affords the first two actions. The device calculates
these values from the wearer’s EEG waves. Tricks for raising the
“attention” level are to read text, count, or perform mental math.
To raise the “meditation” level, players may close their eyes or
take deep, steady breaths. When the meditation level is high
enough, a player’s shield engages, which is indicated by a steady
light. Conversely, a flashing light indicates that the player has no
shield.

Table 1. Player’s Game State, according to
PS Move’s LED light

If Player Has: Ball No Ball

Shield LED Steady Blue LED Flashing Blue

No Shield LED Steady Red LED Flashing Red

Players can throw the ball by swinging the PS Move Controller. A
throw that is successful knocks the other player’s shield off, or—
if the hit player is unshielded—the thrower wins the game. A
player win is indicated by a green light on controller LED. An
unsuccessful throw results in a missed shot. Any throw, with the
exception of a winning throw, always results in the opposing
player gaining possession of the ball.

2.4 Accuracy Modes
The game can be played with two accuracy models to choose
from: threshold-based or probability-based.

In threshold-based accuracy, the players’ controllers’ vibration
level is either at maximum intensity or entirely off, depending on
if a throw will hit or not (respectively).

In probability-based accuracy, the intensity of the controller’s
vibration maps to the player’s attention level. The higher the
player’s attention, the more intense the vibration, and the better
chance of a successful throw. A successful hit is based on a 100-
sided die roll. If the resulting number is less than the player’s
attention level when attacking, the hit is successful.

3. CONFIGURATION OPTIONS
The game’s main variables, described in the online
documentation, can be configured in Processing to fit different
kinds of play styles. It can be played by a single player, against a
simple, computer-controlled opponent. The face-off stage of the
game can be turned off completely or its maximum and minimum
delay times reconfigured. The game can be configured so that

players begin with or without a shield. The accuracy models
described earlier can be selected as well. Finally, players can edit
the minimum gesture strength required to register a throw with the
PlayStation Move Controller, as well as the Meditation and
Attention Threshold values to recover player shields or to make
successful hits.

4. ONLINE DOCUMENTATION
The project website spookydodgeball.wordpress.com contains
the documentation, a gameplay video and links to the software
needed to run this game. In addition, a record of our design
iterations and insights, an explanation of the setup, configuration
options and links to the project’s source code repository are
provided [5].

5. FINDINGS
Throughout this design process, we discovered the potentials and
limitations that the Neurosky MindWave and the Playstation
Move Controller provide game designers. The use of both of
these devices brings some challenges and interesting insights. We
found that despite the variable levels of accuracy and sensitivity
that this inexpensive EEG reader provided, playtesters welcomed
the potential to use the brain as a game input. We also learned to
adapt our design to the constraints of devices like the Neurosky
MindWave, and the affordances of the Playstation Move
Controller. One of the more surprising constraints we discovered
is that the MindWave’s software was designed to be used by a
single headset per computer. To work around this limitation, our
game requires that the each of the two headsets be paired to one
Apple computer, with the computers then being networked
together. In addition, the low rate of EEG signal sampling made
the ‘attention’ and ‘meditation’ levels update slowly. Moreover,
these two values had an inverse relationship. Players had to take
time to increase their meditation or attention values before
executing an attack. We decided to encourage a slower, more

methodical play style by having players exchange possession of
the ball after every attack, and by setting threshold values that
required effort from the player to reach them. Since throwing the
virtual ball as determined by brain sensor readings would have
proven inaccurate, we decided to have players attack with the PS
Move Controller. Thus we capitalized on the affordances of both
devices. Moreover, the novelty for players to be able to use their
brainwaves in gameplay is still very high. We hope that this work
will encourage other game designers to experiment with the
unusual methods of input and output that we employed in this
project, using the devices either together or separately in order to
expand the boundaries of what digital games can be imagined as.

6. ACKNOWLEDGMENTS
We would like to thank Russell J. Huffman and Jessica Anderson
for their vital participation and feedback during our early
playtesting sessions.

7. REFERENCES
[1] MindWave Mobile: Brainwave Starter Kit: 2015.

http://store.neurosky.com/products/brainwave-starter-kit.
Accessed: 2015-1-30.

[2] Processing.org: 2015. https://processing.org/. Accessed:
2015-1-15.

[3] PS Move API (thp.io): 2012. http://thp.io/2010/psmove/.
Accessed: 2015-1-28.

[4] Andreas Schlegel – oscP5: 2011. http://thp.io/2010/psmove/.
Accessed: 2015-1-25.

[5] SDAAD_game-Github: 2015.
https://github.com/Albith/SDAAD_game. Accessed: 2015-2-
15.

