
The Coralize Tool for Creating Underwater Environments

Ryan Abela
Institute of Digital Games

University of Malta
ryan.abela.01@um.edu.mt

Antonios Liapis
Institute of Digital Games

University of Malta
antonios.liapis@um.edu.mt

Georgios N. Yannakakis
Institute of Digital Games

University of Malta
georgios.yannakakis@um.edu.mt

ABSTRACT

This paper describes Coralize, a level design tool targeting
the creation of underwater environments. The user inter-
face allows a scene designer to customize the generative al-
gorithms of different types of corals and sponges. Moreover,
the designer can draw the generated corals onto the scene,
following patterns found in real-world reefs.

1. INTRODUCTION
The procedural generation of vegetation has received con-

siderable attention, and has been often used within the game
industry. Tools such as SpeedTree (IDV 2002) allow game
companies to create realistic 3D models of trees with infinite
variation in a matter of seconds, reducing the required time
and developer effort of creating elaborate forest scenes.

Coralize is a tool which helps users generate corals and reef
systems, and is written as a plugin for the Unity3D game
engine. The main aim of this tool is to procedurally generate
different 3D meshes of corals and sponges, rather than using
predesigned 3D assets. Additionally, the tool provides a
functionality for the designer to build a reef system out of
the generated corals, following patterns of real-world reefs.

A tutorial video of the Coralize tool demonstrating its use
can be found in https://youtu.be/nG7ZoIVCO7M.

2. CREATING MARINE ORGANISMS
The user interface of Coralize allows a scene designer to

customize the algorithms used to generate different types
of marine organisms found in coral reefs and seabeds: in
the current version of Coralize, stony corals, soft corals and
sponges can be generated. By tweaking and customizing
parameters of the generative processes, a scene designer has
control over the visual appearance of the corals and sponges
without creating results which can not be recognized as such.

Stony corals are generated via L-system algorithms [4],
which have been used extensively to replicate natural struc-
tures with some sort of self-repeating (fractal) pattern. L-
systems are defined by a grammar of rewrite rules, producing

(a) UI for customizing stony coral generation.

(b) UI for customizing soft coral generation.

(c) UI for customizing sponge generation.

Figure 1: User Interface for creating marine organisms.

a structure by applying these rules over a number of itera-
tions. Through the graphic user interface, a scene designer
can define the grammar used to generate the corals, the
number of iterations (which affect the size of the coral), the
thickness of the coral structure, the thickness variation and
the number of edges of the generated mesh. Three gram-
mars are currently included for stony corals in Coralize, two
of which are inspired by [2]; the third one creates sea fans.

Soft corals photosynthesize in clear tropical waters, and
are therefore visually more similar to plant life than the
stony corals found in deeper waters. Due to this similarity,
soft corals in Coralize are created via an algorithm originally
used for generating the veins on leaves [3]. This algorithm
works on the concept that a vein is attracted and develops
towards a hormone (auxin) which is embedded in the leaf
blade. Coralize allows a scene designer to customize the
generative parameters, resulting in different soft coral struc-
tures. The customizable parameters are 11 in total, and
include the number of iterations (which do not affect the
size of the coral but do affect the curvature of its mesh), the
initial width of the leaf blade and its increment per iteration,
the vein radius and the shape of the structure.

Sponges have a very different structure and growth pro-
cess than corals. Sponges are among the simplest multicellu-
lar organisms and obtain food, oxygen and dispose of waste
through their pores. Sponge generation in Coralize is in-
spired by the accretive growth model of [1], although it does
not recreate a fluid dynamics model due to computational
constraints. The algorithm starts with an initial hemisphere

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page.
Proceedings of the 10th International Conference on the Foundations of
Digital Games (FDG 2015), June 22-25, 2015, Pacific Grove, CA, USA.
ISBN 978-0-9913982-4-9. Copyright held by author(s).



mesh which grows via nutrient particles randomly placed in
the area above it; nutrients colliding with the sponge cause
it to grow around the collision point, causing the porous
structures common in sponges to emerge. Through the user
interface, a scene designer can customize 9 parameters of the
sponge generator, including the number of iterations (i.e.
the number of nutrient particles and growth cycles used),
the feeding iterations (i.e. the number of neighboring ver-
tices which grow from a single nutrient), the nutrient radius
and lifetime, the number of nutrients per iteration and the
mesh detail of the initial hemisphere.

Using the interfaces described above, the scene designer
can generate 3D meshes of corals or sponges. Once gen-
erated, the designer must specify a number of materials to
the meshes, affecting their coloration. Several appropriate
materials are included in Coralize, although users can also
introduce their own via Unity’s material editor. A scene de-
signer can allocate more than one materials to one type of
organism; when ‘drawing’ corals on the reef (see Section 3),
one of these materials is selected at random and given to
each instance of the coral — leading to variations in colors.

3. CREATING A REEF
Through the interface described above, a scene designer

can create a coral pool which is populated with all the corals
and sponges that are going to make up the reef system (along
with the materials used for their colorations). This coral
pool is used to place corals into a Unity scene. Apart from
simply placing the corals and sponges, Coralize also offers
ways of generating and distributing marine organisms in ac-
cordance to some occurrences in real-life reefs.

A scene designer must assign a game object with collision
enabled to act as the seabed. Once assigned, the designer
can drag a brush across it, and marine organisms from the
pool will start being instantiated as game objects and placed
on the seabed. The brush size and density of corals are cus-
tomizable via the interface (see Fig. 2). While using this
brush can (if so chosen) rotate and scale the marine organ-
isms at random, the 3D meshes inserted into the scene are
the same as the ones in the coral pool and have therefore no
variation. Using the same meshes cuts down on design time
(as no new meshes are re-generated) but also on rendering
time, and provides more creative control to the designer.

In order to provide variation, an automatic brush allows
the designer to create newly generated, unique coral and
sponge meshes. When the automatic brush is dragged along
the seabed, a placeholder cube is placed on the seabed while
the coral is being generated in the background: when gener-
ation is completed, the cube is replaced by the coral. More-
over, the scene designer can add information about the en-
vironment which affects the growth of reefs. The current
version of Coralize allows the placement of water currents,
which the scene designer places as arrows on the scene in-
dicating water flow. Since real-life sponges and corals rely
on plankton and nutrients to be delivered through water
streams, marine organisms placed along the current will be
larger and healthier than those sheltered from it. When
placing the current, the designer can specify its strength (i.e.
how far away the water current influences growth) and its
radius. Corals along the path of the current and within its
influence have their thickness (which informs the generative
process) increased. Future versions of Coralize can explore
the adjustment of more parameters such as the number of

Figure 2: Placing corals and sponges on the scene from the
coral pool (right) using the Coralize brush.

Figure 3: Corals along the path of a water current and within
its influence radius have thicker 3D meshes. The scene in-
cludes some placeholder cubes from the automatic brush,
which are replaced by meshes when generation completes.

iterations or the mesh detail, in order to create larger, more
impressive corals along the current’s path.

4. CONCLUSION
Coralize is a Unity3D plugin which allows scene design-

ers to build a reef system in minutes. Since the corals and
sponges are generated algorithmically, diversity in appear-
ance is ensured without the need of buying or handcrafting
3D assets and reusing them. The two different brushes en-
able scene designers to construct a seabed according to their
needs, and added features like the water currents give a more
realistic appearance to the reef.

Acknowledgements

The research was supported, in part, by the FP7 ICT project
C2Learn (project no: 318480) and by the FP7 Marie Curie
CIG project AutoGameDesign (project no: 630665).

5. REFERENCES
[1] J. A. Kaandorp and J. E. Kübler. The algorithmic beauty of

seaweeds, sponges and corals. Springer, 2001.
[2] M. Meister. Interactive Visualization in Interdisciplinary

Applications. PhD thesis, University of Erlangen-Nuremberg,
2008.

[3] A. Runions, M. Fuhrer, B. Lane, P. Federl, A.-G.
Rolland-Lagan, and P. Prusinkiewicz. Modeling and
visualization of leaf venation patterns. In ACM Transactions
on Graphics, volume 24, pages 702–711. ACM, 2005.

[4] J. Togelius, N. Shaker, and J. Dormans. Grammars and
L-systems with applications to vegetation and levels. In
Procedural Content Generation in Games: A Textbook and
an Overview of Current Research. 2015.


