Adventures in Hyrule: Generating Missions & Maps For
Action Adventure Games

[Extended Abstract]

Becky Lavender
Department of Computing & Mathematics
University of Derby
Derby, UK

becky@beckylavender.co.uk

ABSTRACT

This paper discusses ongoing research into the construction
of action adventure maps akin to those found within clas-
sic Nintendo series The Legend of Zelda. Following exist-
ing work in the composition of missions and spaces for the
action-adventure genre, this work adopts these methods into
a open-source 2D tile-based game with similar mechanics
and tropes to that of the Zelda series.

1. INTRODUCTION

Procedural content generation (PCG) algorithms are pop-

ular in video game development given the opportunities present

in crafting artefacts for player consumption. However, it is
crucial that assurances can be given for consistency and va-
lidity of content. This paper concerns itself with the gener-
ation of Action-Adventure (AA) ‘dungeons’, which require
not only valid topology and structure, but the accurate con-
struction of intricate key and lock puzzles puzzles for players
to solve. The focus on these puzzles is what differentiates
AA maps from those found in roguelikes, where experience
and loot dictate progression and map layout is not integral.

Previous work by Dormans found in [3] denotes AA dun-
geons as comprised of two distinct structures: mission struc-
ture and the physical space of the dungeon, with their re-
lationship largely responsible for what differentiates them
from other genres. Dormans argues that these structures
should be developed independently; with a unique grammar
for each component. Despite this assertion, this technique
has yet to be applied to a typical 2D tiled AA game. As such,
some typical AA mechanics have not been applied with the
system. Moreover, obstacles in shape grammar generation
are not described to an implementation-ready level of detail
in existing work.

In this paper, we highlight ongoing work aimed at adopt-
ing this two-tier approach to overcome problems inherent
in AA dungeon generation. This is achieved by creating a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page.

Proceedings of the 10th International Conference on the Foundations of
Digital Games (FDG 2015), June 22-25, 2015, Pacific Grove, CA, USA.
ISBN 978-0-9913982-4-9. Copyright held by author(s).

Tommy Thompson
Department of Computing & Mathematics
University of Derby
Derby, UK
tommy@t2thompson.com

Alphabet:

bl = boss (level) G = Gate | = lock

bm = boss (mini) g = goal If = lock (final)
C = Chain H = Hook Im = lock (multi)

CF = Chain (Final) ib = item (bonus) n = nothing/exploration

CL = Chain (Linear) ig = item (quest) S = Start
CP = Chain (Parallel) k = key t = test
e = entrance kf = key (final) ti = test (item)

F = Fork km = key (multi piece) ts = test (secret)

Figure 1: The alphabet for mission grammar to rep-
resent an action-adventure dungeon akin to Legend
of Zelda, detailed in [3].

mission and map generator, and applying the result to Mys-
tery of Solarus [7]: an open-source game heavily inspired
by Legend of Zelda: A Link to the Past [5].

2. BACKGROUND

Dormans’ method involves first creating a mission gram-
mar which consists of an alphabet shown in Figure 1. This
grammar is comprised of non-terminal, high level symbols
("Parallel Chain’, ’Fork’) and terminal low level symbols
(key’, ’lock’, ’test’), with rules for rewriting non-terminal
symbols with terminal ones. Some nodes are connected by
’tight connections’; which dictate that nodes must be placed
consecutively in a map. For instance, a treasure chest con-
taining a reward should be placed directly after a mini boss
fight. These rules are recursively applied to an initial graph
during the generation process, until a completed mission
graph such as the one in Figure 2 is achieved.

Mission graphs are then taken as input into the space
generation system. Shape rules, which each correspond to a
symbol in the alphabet, dictate which room should be placed
for each node in the mission graph. For the purposes of this
work, a grid-based map is produced in which each room con-
tains a mission symbol (Figure 3). Dormans’ sentiments on
the benefits of quest and map generation were echoed in [8],
which cites the coupling of generators as a step towards mul-
tilevel PCG. The addition of context to space generators has
also been suggested as means to avoid generated content
which is perceived as bland and random [2]. Similar exam-
ples of context being added to Action-Adventure spaces can
be seen in projects such as GameForge [4] and Charbitat [2].

P W o 7~
OO @00,
-
.

©=®
O=® /o0
(=) @)

"_,:‘_"\/ /_} \

/
N
\o-0

O=® \(Z

Figure 2: An example mission. Each node has a
symbol which represents a room type from Figure
1. Taken from [3].

n tsb n
ik t 1 t n t k t k
| km | kf n ib t iq ib
ts s t bm t

g bl If Im t n | km

ib t t
e —
km t e

Figure 3: An example map in which each room rep-
resents a node from the mission graph.

3. OVERVIEW OF DEVELOPMENT

Our mission generator takes an alphabet, a set of rules
and an initial graph as input, iterating through and rewrit-
ing sections of the graph until a completed mission graph is
produced, which contains only terminal symbols. Our map
generator subsequently iterates through nodes in the mis-
sion graph and places a corresponding room from an exist-
ing door. Once the mission has been completely accounted
for in the space, all extraneous doors are removed. A num-
ber of challenges were faced in development, some of which
had been alluded to in [3] but not described in detail. This
includes the conservation of mission structure by defining
a complex graph traversal order for room placement and
the prevention of paths of rooms being placed in dead ends.
The latter is an issue that would prevent tightly connected
rooms being placed from their corresponding parents. In ad-
dition, nodes in long tightly connected chains require room
positions to be reserved, albeit without placing them prema-
turely and thus corrupting mission structure (e.g. placing
keys behind the doors they correspond to).

The maps produced were applied to open source game Mys-
tery of Solarus, with rooms created by hand using the So-
larus map editor [1]. The game produced shares the me-
chanics and aesthetic of The Legend of Zelda: A Link To
The Past [5], released on the Super Nintendo in 1991. How-
ever, one constraint is that dungeon maps are made up solely
of fixed-size rectangular rooms, whose placement dictate the
dungeon layout. Traditional ‘Zelda’ mechanics such as mon-

sters, traps, secrets, dungeon items, mini-bosses, multi-part
keys and locks are all exhibited. Despite this, the implemen-
tation imposes some limitations: it was necessary to design
some rooms symmetrically, given our inability to pre-empt
which direction the player would come from or be headed
to.

In keeping with existing research in procedural content
generation systems [6], it is important that the expressive
range and variability of our generators are evaluated. Both
the mission and space generators can be evaluated against
core metrics mission linearity, map linearity, leniency and
path redundancy. This analysis is complete at the time of
writing, but merits discussion that is beyond the remit and
length of this paper. It is our intention to discuss this in a
future publication.

4. SUMMARY

Our work demonstrates reproduction of the mission gram-
mar generator in [3] for Zelda-style games. Existing issues
with the space generation section of [3] are acknowledged,
with this work providing solutions to the problems encoun-
tered. It is our intention to document these solutions fully in
future. We also successfully add context to maps and conse-
quently the dungeons they produce. By producing a method
through which to solve the issues involved in generating AA
content, we provide evidence that procedural action adven-
ture games have potential and hopefully pave the way for
more research in the area. Ultimately, adding context to
PCG enables us to move away from bland, random content
which is novel solely because it is generated, and towards
purposeful content which is novel in and of itself.

S. REFERENCES

[1] Solarus: An ARPG game engine [sic].
http://www.solarus-games.org/. [Online; accessed
11-April-2015].

[2] C. Ashmore and M. Nitsche. The quest in a generated
world. In Proc. 2007 Digital Games Research
Assoc.(DiGRA) Conference: Situated Play, pages
503-509, 2007.

[3] J. Dormans. Adventures in level design: generating
missions and spaces for action adventure games. In
Proceedings of the 2010 workshop on procedural content
generation in games, page 1. ACM, 2010.

[4] K. Hartsook, A. Zook, S. Das, and M. O. Riedl. Toward

supporting stories with procedurally generated game

worlds. In Computational Intelligence and Games

(CIG), 2011 IEEE Conference on, pages 297-304.

IEEE, 2011.

Nintendo. The legend of zelda: A link to the past, 1991.

G. Smith and J. Whitehead. Analyzing the expressive

range of a level generator. In Proceedings of the 2010

Workshop on Procedural Content Generation in Games,

page 4. ACM, 2010.

[7] Solarus. Zelda mystery of solarus dx, 2008.

[8] J. Togelius, A. J. Champandard, P. L. Lanzi,

M. Mateas, A. Paiva, M. Preuss, K. O. Stanley, S. M.
Lucas, M. Mateas, and M. Preuss. Procedural content
generation: Goals, challenges and actionable steps.
Artificial and Computational Intelligence in Games,
6:61-75, 2013.

N

