
Semantic Descriptions for Logical Content Generation

Thomas Smith
Ninja Theory, Ltd.
Westbrook Centre,

Milton Road,
Cambridge, CB4 1YG, UK
t.a.e.smith@bath.ac.uk

Julian Padget
Centre for Digital
Entertainment,

University of Bath,
gBath, BA2 7AY, UKg

masjap@bath.ac.uk

Andrew Vidler
Ninja Theory, Ltd.
Westbrook Centre,

Milton Road,
Cambridge, CB4 1YG, UK

andrew.vidler@ninjatheory.com

ABSTRACT
Human designers understand a range of potential purposes
behind objects and configurations when creating content,
which are only partially addressed in typical procedural con-
tent generation techniques. This paper describes our re-
search into the provision and use of semantic information
to guide logical solver-based content generation, in order to
feasibly generate meaningful and valid content.

Initial results show we can use answer set programming to
generate basic roguelike dungeon layouts from a provided
semantic knowledge base, and we intend to extend this to
generate a range of other content types. By using semantic
models as input for a content-agnostic generation system, we
hope to provide more domain-general content generation.

Categories and Subject Descriptors
I.2.3 [Artificial Intelligence]: Deduction and Theorem
Proving—Logic programming ; I.2.4 [Artificial Intelligence]:
Knowledge Representation Formalisms and Methods; K.8.0
[Personal Computing]: General—Games

General Terms
Design, Performance

Keywords
Answer set programming, knowledge representation, proce-
dural content generation, semantics

1. INTRODUCTION
Research into procedural content generation (PCG) for games
is a broad topic, however many implemented systems are
highly bespoke and tightly coupled to either the game or
the content they were initially designed to produce. This
makes it difficult for developers unfamiliar with the work-
ings of a generator to alter its output or repurpose it for
other games or content types, limiting opportunities for the
reuse of code and systems and the benefits this can bring.

In this paper, we address one of the ‘grand goals’ of PCG
research suggested in a recent overview paper [10] — specif-
ically, the difficulty of developing Multi-level, Multi-content
PCG. We approach this through one of the concrete research
challenges listed: General Content Generators. We hope to
provide a step towards the development of plug-and-play
content generation, by allowing designers to specify the re-
quirements for content within a game in order to be able to
automatically generate content for it.

Current PCG systems are often highly bespoke and encode
implicit assumptions about the desired content in the de-
sign or implementation of the generator, which can make
it difficult to predict precisely their expressive capabilities.
The behaviour and output of a generator can also be chal-
lenging to alter without an understanding of the intention
of particular features. In a similar manner, human designers
encode implicit meaning in the placement of objects within
a level, and alteration of human-designed levels can lead to
unintended consequences if the rationale behind the original
layout is not fully understood. These designer intentions are
not explicitly captured by traditional editing tools, compli-
cating attempts to procedurally alter content or generate
levels with a similar degree of conceptual sophistication.

By allowing formal specification of the desired relationships
between entities and concepts within the desired generated
content, it should be possible to capture some of these im-
plicit intentions. It should then be feasible to use modular
logic programs based on common repair actions or typical
designer approaches to iteratively refine a model of the con-
tent, from a high-level abstraction right down to the concrete
placement of meshes and effects within the game engine.
This approach would also support correcting, or suggest-
ing alternatives to, designer-generated content. In-editor
possibilities include highlighting violations of the provided
constraints, such as completion path feasibility or obstacle
placement rhythms, with potential for automated repair.

The availability of a truly general, modular content gener-
ator would reduce the time spent developing bespoke so-
lutions for particular applications. The same proven code
base could be reused across multiple projects, and familiar-
ity with the system would transferable into each new con-
text. In addition, any improvements to the capabilities or
the efficiency of the system could provide benefit across all
projects that used it. This research intends to provide a step
towards developing reusable, meaningful content generation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page.
Proceedings of the 10th International Conference on the Foundations of
Digital Games (FDG 2015), June 22-25, 2015, Pacific Grove, CA, USA.
ISBN 978-0-9913982-4-9. Copyright held by author(s).



1.1 When is a door not a door?

Figure 1: Potential roles for a door in gameplay.

As a concrete example, a door in a video-game level may
serve multiple potential purposes. Depending on the game,
it could be intended to provide a choke-point for oncoming
enemies, an obstacle to progression until the correct key is
found, a line-of-sight blocker intended to separate visible
areas, all of the above or more.

Semantic annotation for these possible roles means that any
or all of them could be taken into account during the gener-
ation process: in order to augment the combat experience,
progression pacing, streaming efficiency, or a combination
of these or other reasons. During the generation of a level,
it may be desirable to use a door for reasons relating to
the theme and appearance of the content — semantic an-
notation would allow a holistic approach to considering the
impact that would have on other game aspects.

2. BACKGROUND
The proposed research draws upon advances detailed in re-
lated work in a number of areas: the development and eval-
uation of PCG systems, the use of answer set programming
(ASP) for PCG, and the role of semantics in augmenting and
guiding procedural generation. It also makes use of theories,
knowledge representation formats and systems developed by
researchers in the field of Semantic Web [3].

PCG is increasingly being considered as a tool to augment
designers’ creativity. A number of recent papers [6, 9] con-
sider the concept of ‘mixed initiative’ generation, where the
authorial burden is shared to some degree between the de-
signer and the system. However, there are still issues with
the close coupling between most generators and their games,
and the resulting difficulties evaluating and comparing be-
spoke generator systems [4, 9].

Another active research area is the application of semantic
data to improve consistency between appearance and affor-
dance in virtual worlds [5]. For PCG, this would involve
establishing of a layer of ‘meaning’ meta-data to capture
and record designers’ intentions explicitly. This could then
be used to produce constraints on generation.

There is already a significant body of existing research on
semantic knowledge representation in areas relating to the
Semantic Web. There are a range of tools and formats which
have been developed to specify ontologies describing classes,
entities, and their relationships [1], however so far it appears
that semantic data is almost exclusively used for the descrip-
tion of existing entities rather than the generation of new,
valid information.

Answer set programming is a comparatively recent approach
for PCG, which uses a logic solver to select valid outputs
from a constraint-bound space of possible solutions [8]. Given
an appropriate formalisation of the facts and rules associ-
ated with the search space, it can be guaranteed to select
only instances that satisfy hard gameplay constraints such
as connectivity and solution existence. This power comes at
the cost of applying a range of domain-specific techniques
to limit the potential combinatorial explosion in the answer
set space [7].

One possible approach is to integrate a semantic model to
guide successive, iterative generation steps; using a range
of smaller ASP programs that gradually refine an abstract
model of the generated content into the final output. Dor-
mans [2] describes a similar, graph-based system using rewrite
systems to iteratively refine a model of the desired content,
prior to translation to a usable play space.

3. GOALS AND RESEARCH QUESTIONS
The overall goal of the research is to demonstrate the feasi-
bility and efficiency of using logic-based solvers to generate
a range of content from semantic descriptions of the desired
generative space. As an initial target, we aim to show that
general logic-based solver modules can be used with a suit-
able knowledge base of constraints and relationships to gen-
erate playable roguelike dungeon levels.

The proposed research will consist of two main tasks: the
investigation of suitable formats and patterns for the pro-
vision of high-level semantic data about the desired proper-
ties of playable spaces, and the development and refinement
of reusable generator components that can transform these
semantic specifications into concrete playable worlds. Ulti-
mately, it should be possible for designers to supplement a
provided ontology of base concepts with refinements specify-
ing classes and relationships within the desired content, and
then use the solver system and this augmented ontology to
automatically generate or verify and evaluate content that
fits their specifications.

We can then demonstrate the versatility of our system by
generating sample artefacts of a range of kinds and evaluat-
ing them against the output of other respected generators,
as in [4]. There is also potential for live evaluation by pro-
fessional game designers, who will be able to give feedback
on the perceived usability of the system.



4. INITIAL STUDY AND PROPOSAL
The current proof-of-concept is based upon dlvhex, an ASP
solver which supports plugins for external computation [3],
and is able to read appropriate values from a supplied on-
tology and use these as input to an ASP layout solver for
2D roguelike dungeon levels. The use of ASP allows cer-
tainty that properly constructed constraints such as feasi-
ble paths from start to end will hold valid in all generated
instances, whilst also potentially supporting more complex
requirements such as a desired branching factor or the pres-
ence of loops and short-cuts within the game level.

4.1 dlvhex: ASP + computation
Though ASP provides useful guarantees regarding gameplay
requirements, it is unsuited to some specific generation tasks
such as solving geometric constraints. The dlvhex system
supports plugins to provide external computation such as
collision checking or path planning, and can also access ex-
ternal sources of data such as ontologies or other databases.

Both description logics (ontologies) and logic programming
(ASP) provide reasoning-amenable formalisations of facts
relating to a particular area, however they do so in different
ways. One of the research challenges of this project will be
developing ways to integrate the two approaches.

4.2 Further work
Further work currently includes defining a broader base on-
tology for a range of common cases, and improving solver
support for these tasks. The system needs to support writ-
ing data back into the ontology for iterative refinement, and
reading fixed facts for mixed-initiative generation. A trans-
formation scheme would guide progression between tasks,
and further consideration is needed for the method of trans-
lating solver output into playable content

Finally, system integration with an industry standard editor
and an interface for editing semantic data and supporting
mixed-initiative work would enable in-editor evaluation by
game design professionals. It should be possible to annotate
existing objects and compose or select design constraints
with as little friction as possible in order to encourage ex-
perimentation and rapid iteration.

Development of a content-agnostic generator system as de-
scribed would approach the goal of being able to produce
‘plug-and-play’ PCG middleware for a wide range of games
and content types [10].

5. REFERENCES
[1] G. Antoniou and F. Van Harmelen. Web ontology

language: OWL. In Handbook on Ontologies, pages
67–92. Springer, 2004.

[2] J. Dormans. Level design as model transformation: a
strategy for automated content generation. In
Proceedings of the 2nd International Workshop on
Procedural Content Generation in Games, page 2.
ACM, 2011.

[3] T. Eiter, G. Ianni, R. Schindlauer, and H. Tompits.
dlvhex: A prover for semantic-web reasoning under
the answer-set semantics. In IEEE/WIC/ACM
International Conference on Web Intelligence, pages
1073–1074. IEEE, 2006.

[4] B. Horn, S. Dahlskog, N. Shaker, G. Smith, and
J. Togelius. A comparative evaluation of procedural
level generators in the Mario AI framework. In
Proceedings of the 9th International Conference on
Foundations of Digital Games. Society for the
Advancement of the Science of Digital Games, 2014.

[5] J. Kessing, T. Tutenel, and R. Bidarra. Designing
semantic game worlds. In Proceedings of the The Third
Workshop on Procedural Content Generation in
Games, pages 2:1–2:9. ACM, 2012.

[6] A. Liapis, G. N. Yannakakis, and J. Togelius. Sentient
sketchbook: Computer-aided game level authoring. In
Proceedings of the 8th Conference on the Foundations
of Digital Games, pages 213–220. ACM, 2013.

[7] A. J. Smith and J. J. Bryson. A logical approach to
building dungeons: Answer set programming for
hierarchical procedural content generation in roguelike
games. In Proceedings of the 50th Anniversary
Convention of the AISB, 2014.

[8] A. M. Smith and M. Mateas. Answer set programming
for procedural content generation: A design space
approach. Computational Intelligence and AI in
Games, IEEE Transactions on, 3(3):187–200, 2011.

[9] G. Smith, J. Whitehead, and M. Mateas. Tanagra:
Reactive planning and constraint solving for mixed-
initiative level design. Computational Intelligence and
AI in Games, IEEE Transactions on, 3(3):201–215,
2011.

[10] J. Togelius, A. J. Champandard, P. L. Lanzi,
M. Mateas, A. Paiva, M. Preuss, and K. O. Stanley.
Procedural Content Generation: Goals, Challenges
and Actionable Steps. In Artificial and Computational
Intelligence in Games, volume 6 of Dagstuhl
Follow-Ups, pages 61–75. 2013.


