
Proof-Theoretic Study of Game Mechanics

Chris Martens
Carnegie Mellon University

Pittsburgh, PA
cmartens@cs.cmu.edu

ABSTRACT
We describe the use of proof-theoretic techniques for the
analysis of games and the design of a programming language
aimed at game design prototyping.

1. INTRODUCTION
My Ph.D. research focuses on the use of proof-theoretic

techniques to create models of game mechanics that can be
executed and analyzed.

Proof theory is a tool for the design of logics. For a given
logic, one inspects the structure of proofs that one can form
according to its rules and asks questions about global prop-
erties and structure. One may ask how proofs can be re-
duced while preserving certain properties and which proofs
are considered equal. One may also view proofs as programs,
and this discovery has led to greater understanding and in-
formed design of programming languages. My work aims to
connect these ideas specifically to programming languages
for game modeling, viewing game rules themselves as rules
embedded in a logic.

My goal is to study the computational processes involved
in play of various kinds, especially focused on procedural
generation and emergent narrative through multi-agent sys-
tems. To this end, my thesis project extends a proof-theoretic
formal modeling system based on linear logic programming
with as few additional language constructs as possible to
express a wide range of gameplay idioms and interactions.
Execution traces correspond to proofs, and their structure
records which actions depend on the consequences of other
actions, yielding not (necessarily) a linear sequence of pro-
gram events but a partially-ordered DAG (directed acyclic
graph) of such events. For this reason, the programming
model can support specifications of concurrent actions among
multiple game entities or agents. In the long run, such a
language might be used as an intermediate language for a
game-specific, user-facing game creation tool.

The research questions involved in this project include the
following:

1. Which game designs contain interesting concurrent struc-
ture? Can a nondeterministic concurrent specification
straightforwardly be given meaning as a multiplayer
game? How does the existence of multiple agents com-
plicate the structure of branching narratives?

2. What feedback loops and other structural properties
exist in procedural game mechanics, especially those
involving resource management and open-world exper-
imentation?

3. How can we classify, for the sake of eventually mini-
mizing, bugs in emergent simulations? Can we model
check or otherwise statically analyze the state space
for certain game models?

4. What kinds of software tools based on these ideas can
help game designers achieve useful digital prototypes?

2. BACKGROUND
Logic programming, also known as relational program-

ming, allows an author (or game designer) to specify a col-
lection of terms and predicates that maay relate them, then
to write rules in the form of logical implication between pred-
icates. A proof-theoretic logic programming language gives
meaning to program execution as proof search in a given logic
– each step the program takes as it runs corresponds to some
valid and immediate inference step in the logic. In linear
logic programming, inference steps may exchange some facts
for others, rather than strictly increasing the body of known
facts. For this reason, it is well-suited to model complex
evolving states (as described through game rules) and study
their dynamics on the basis of proof structure.

Consider as an example a game of social interaction such
as Prom Week [3] wherein agents have internal state rep-
resenting their sentiments toward other characters, and the
player-controlled actions in the game both affect and are
affected by those sentiments. One example might be a sim-
plified rule for bullying described as:

bully (A, B):

if: affection(A,B) < 0 and admiration(A,B) < -1

then: decrement affection(B,A)

This rule schema may be instantiated for any pair of char-
acters A and B, and the player may choose any pair for which
the preconditions hold. Thus the story is formed by player
choices between rules like this one that may be instantiated
with any set of applicable characters. In proof search, that
process corresponds to choosing a term to substitute into a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page.
Proceedings of the 10th International Conference on the Foundations of
Digital Games (FDG 2015), June 22-25, 2015, Pacific Grove, CA, USA.
ISBN 978-0-9913982-4-9. Copyright held by author(s).



universal quantification and then eliminating the resulting
implication by replacing its premises with its conclusion.

In traditional programming languages, modeling this sort
of rule would involve crafting several data structures to model
the relationships between characters and the evolution of
those relationships, as well as complex control structures for
checking the application of rules. In a logic programming
language, all of that machinery comes for free. Such rules
are easily modeled in linear logic and, using language exten-
sions in my thesis, can scale to the multi-stage process of
computing character AI behavior in systems such as Prom
Week’s.

The logic programming approach has a lot in common
with planners such as STRIPS (note that the above is effec-
tively a STRIPS rule), which have been used extensively in
interactive story modeling. [6, 4] By contrast, linear logic
programs have an execution semantics such that we can
run the search mechanism as itself a game execution engine,
rather than using a planner as intermediate process within
the event loop of a running game.

This work may impact several games-related bodies of
study. First, the need for general game description lan-
guages capable of describing digital games has been well
articulated [1]. Linear logic could be a good candidate due
to its generality; nothing in it is specialized to any specific
kind of game logic, but it is flexible enough to express id-
ioms from several. The implications of a general enough
executable game description language include the ability to
compare the core systems within different games side-by-side
for the sake of analysis, as well as rapid prototyping and easy
experimentation with mechanics for game designers.

My work aims to unify certain computational tools em-
ployed in formal methods and programming languages re-
search with the creation and study of games. In this work,
I think of games as systems like any other with the distin-
guishing property that program evolution may be influenced
by more than one process (at least one computational agent
and one human), and in this sense I do not really distin-
guish games from arbitrary concurrent programs except at
an informal level.

3. METHOD AND CURRENT STATUS
My thesis project consists of three main components:

1. Using an existing linear logic programming language,
Celf, as a narrative generation engine by describing a
story world as a linear logic program [2]. This work
shows how linear logic can be use to depict interactions
between subsets of agents, and the resulting proof cor-
responding to a story contains concurrent structure
embodying independent courses of narrative events.
This structure can be visualized to reveal narrative
flow and feedback loops between groups of narrative
actions, enabling some answers to research questions 1
and 2 from Section 1.

2. Designing and implementing the language Ceptre, a
language based on a subset of Celf and extended with
constructs for interaction and control flow.1 Along
the way I have developed numerous examples of game

1Draft available at
http://www.cs.cmu.edu/~cmartens/ceptre.pdf

mechanic design in this language, showing how to ex-
tend the construct used in narrative descriptions to
also depict basic movement and puzzle logics. The de-
velopment of a progrmaming language allows one to
easily mock up a game simply by describing its rules,
rather than by first requiring the designer to describe a
mapping from internal game state to visual or physical
components. The ability to mock up a set of rules in
an executable language allows for answers to questions
2 and 3 by way of playtesting and post-playtest proof
term analysis.

3. Designing a meta-language for describing Ceptre pro-
gram invariants and an algorithm for automatically
checking them. This part of the project aims to ad-
dress research questions 2 and 3 by allowing a game
designer to state design intents as formal, checkable
program invariants.

I have currently completed part (1) of my thesis and have
made considerable progress on parts (2) and (3): I have
written a draft paper on the design of Ceptre and imple-
mentation is in progress.2

I am designing a meta-language for describing contract-
like properties of linear logic program stages (pre-conditions,
post-conditions, and invariants) that aims to let a designer
express her intent in a way that can be programatically
checked.

4. FUTURE PLANS
In the immediate future (i.e. for my thesis) I intend to

complete the proof-of-concept implementation of Ceptre and
the proofs for the invariant language. In the longer term, I
hope to continue investigating logical formalisms based on
proof theory (including and outside of linear logic) as tools
for expressing playful rule systems. For example, one re-
lated project I would like to pursue is a mixed-initiative
game design tool wherein a human and computational agent
take turns proposing rules and exploring their consequences.
This project would involve as a substantial component the
formalization of a large library of game mechanics in such a
way that a user could combine them and edit them off-the-
shelf.

I would also like to more deeply investigate the implica-
tions of concurrent structure in simulations and narrative
timelines, particularly as they pertain to narrative focaliza-
tion (an agent’s point-of-view). Justus and Young’s work [5]
on rearranging narratives as long as what is observable to a
player stays consistent could be a form of proof equivalence
within an epistemic modal logic, for instance.

5. REFERENCES
[1] M. Ebner, J. Levine, S. M. Lucas, T. Schaul,

T. Thompson, and J. Togelius. Towards a video game
description language. Artificial and Computational
Intelligence in Games, 6:85–100, 2013.

[2] C. Martens, J. F. Ferreira, and A.-G. Bosser.
Generative story worlds as linear logic programs. In
Intelligent Narrative Technologies, 2014.

2See
http://www.github.com/chrisamaphone/interactive-lp



[3] J. McCoy, M. Treanor, B. Samuel, M. Mateas, and
N. Wardrip-Fruin. Prom week: social physics as
gameplay. In Proceedings of the 6th International
Conference on Foundations of Digital Games, pages
319–321. ACM, 2011.

[4] J. Porteous, M. Cavazza, and F. Charles. Applying
planning to interactive storytelling: Narrative control
using state constraints. ACM Trans. Intell. Syst.
Technol., 1(2):10:1–10:21, Dec. 2010.

[5] J. Robertson and R. M. Young. Modelling character
knowledge in plan-based interactive narrative to extend
accomodative mediation. In Ninth Artificial Intelligence
and Interactive Digital Entertainment Conference, 2013.

[6] R. M. Young. Notes on the use of plan structures in the
creation of interactive plot. In Narrative Intelligence:
Papers from the AAAI Fall Symposium. AAAI Press,
1999.


